Skip to main content Accessibility help

Mixed micelles from synergistic self-assembly of hybrid copolymers with charge difference electrostatic interaction induced re-organization of micelles from hybrid copolymers

  • Yiting Xu (a1), Ying Cao (a2), Jianjie Xie (a2), Qi Li (a2), Xianming Chen (a2), Shiao-Wei Kuo (a3) and Lizong Dai (a2)...


Novel mixed micelle was successfully fabricated by the synergistic self-assembly of poly(methacrylate isobutyl polyhedral oligomeric silsesquioxane (POSS)-co-N-isopropylacrylamide-co-oligo(ethylene glycol)methyl ether methacrylate-co-acrylic acid) (P(methacrylate isobutyl (MAPOSS)-co-NIPAM-co-OEGMA-co-AA)) and poly(methacrylate isobutyl POSS-co-N-isopropylacrylamide-co-oligo(ethylene glycol) methyl ether methacrylate-co-2-vinylpyridine) (P(MAPOSS-co-NIPAM-co-OEGMA-co-2VP)). Dynamic light scattering (DLS) and transmission electron microscopy characterizations demonstrate that the formation of mixed micelles is driven by electrostatic interaction. The formation of the mixed micelles was further implied by a simple fluorescence resonance energy transfer based technique. The mixed micelle possesses the biggest size at pH = 7.0, which is attributed to the strongest electrostatic interaction between the two kinds of micelles. The zeta potential under different pH was detected to further investigate the surface charges corroborating the discussions. DLS and UV-vis indicate that the lower critical solution temperature (LCST) is pH dependent. The mixed micelles reach the highest LCST at pH 7.0. The LCST of the mixed micelle can be tuned by adjusting the volume ratio of the two kinds of micelles as well. Moreover, the thermo-responsive behavior of the mixed micelle is absolutely reversible.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Tao Xie



Hide All
1. Upadhyay, K.K., Agrawal, H., Upadhyay, C., Schatz, C., Le Meins, J-F., Misra, A., and Lecommandoux, S.: Role of block copolymer nanoconstructs in cancer therapy. Crit. Rev. Ther. Drug Carrier Syst. 26(2), 157 (2009).
2. Ikkala, O. and Ten Brinke, G.: Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chem. Commun. 10(19), 2131 (2004).
3. Yu, Y. and Eisenberg, A.: Control of morphology through polymer–solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J. Am. Chem. Soc. 119(35), 8383 (1997).
4. Zhang, L., Yu, K., and Eisenberg, A.: Ion-induced morphological changes in “crew-cut” aggregates of amphiphilic block copolymers. Science 272(5269), 1777 (1996).
5. Zhang, L. and Eisenberg, A.: Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc. 118(13), 3168 (1996).
6. Schild, H.G.: Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 17(2), 163 (1992).
7. Rodriguez-Hernandez, J., Chécot, F., Gnanou, Y., and Lecommandoux, S.: Toward “smart” nano-objects by self-assembly of block copolymers in solution. Prog. Polym. Sci. 30, 691 (2005).
8. Soppimath, K., Aminabhavi, T., Dave, A., Kumbar, S., and Rudzinski, W.: Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev. Ind. Pharm. 28(8), 957 (2002).
9. Pinkrah, V., Snowden, M., Mitchell, J., Seidel, J., Chowdhry, B., and Fern, G.: Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels. Langmuir 19(3), 585 (2003).
10. Torres-Lugo, M. and Peppas, N.A.: Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32(20), 6646 (1999).
11. He, C., Zhao, C., Guo, X., Guo, Z., Chen, X., Zhuang, X., Liu, S., and Jing, X.: Novel temperature-and pH-responsive graft copolymers composed of poly(L-glutamic acid) and poly(N-isopropylacrylamide). J. Polym. Sci., Part A: Polym. Chem. 46(12), 4140 (2008).
12. Ayres, N., Cyrus, C.D., and Brittain, W.J.: Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir 23(7), 3744 (2007).
13. Zhang, W., Shi, L., Ma, R., An, Y., Xu, Y., and Wu, K.: Micellization of thermo-and pH-responsive triblock copolymer of poly(ethylene glycol)-b-poly (4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules 38(21), 8850 (2005).
14. Pottier, C., Morandi, G., Dulong, V., Souguir, Z., Picton, L., and Le Cerf, D.: Thermo-and pH-sensitive triblock copolymers with tunable hydrophilic/hydrophobic properties. J. Polym. Sci., Part A: Polym. Chem. 53(22), 2606 (2015).
15. Li, G., Shi, L., Ma, R., An, Y., and Huang, N.: Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers. Angew. Chem. 118(30), 5081 (2006).
16. Lee, Y., Ishii, T., Cabral, H., Kim, H.J., Seo, J.H., Nishiyama, N., Oshima, H., Osada, K., and Kataoka, K.: Inside cover: Charge-conversional polyionic complex micelles—Efficient nanocarriers for protein delivery into cytoplasm. Angew. Chem., Int. Ed. 48(29), 5220 (2009).
17. Kuo, S.W., Tung, P.H., Lai, C.L., Jeong, K.U., and Chang, F.C.: Supramolecular micellization of diblock copolymer mixtures mediated by hydrogen bonding for the observation of separated coil and chain aggregation in common solvents. Macromol. Rapid Commun. 29(3), 229 (2008).
18. Chen, D. and Jiang, M.: Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 38, 494 (2005).
19. Hsu, C-H., Kuo, S-W., Chen, J-K., Ko, F-H., Liao, C-S., and Chang, F-C.: Self-assembly behavior of AB diblock and CD random copolymer mixtures in the solution state through mediated hydrogen bonding. Langmuir 24(15), 7727 (2008).
20. Kang, N., Perron, M-È., Prud'Homme, R.E., Zhang, Y., Gaucher, G., and Leroux, J-C.: Stereocomplex block copolymer micelles: Core–shell nanostructures with enhanced stability. Nano Lett. 5(2), 315 (2005).
21. Attia, A.B.E., Ong, Z.Y., Hedrick, J.L., Lee, P.P., Ee, P.L.R., Hammond, P.T., and Yang, Y-Y.: Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interface Sci. 16(3), 182 (2011).
22. Wu, C., Ma, R., He, H., Zhao, L., Gao, H., An, Y., and Shi, L.: Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol. Biosci. 9(12), 1185 (2009).
23. Hussain, H., Tan, B., Mya, K.Y., Liu, Y., He, C., and Davis, T.P.: Synthesis, micelle formation, and bulk properties of poly(ethylene glycol)-b-poly(pentafluorostyrene)-g-polyhedral oligomeric silsesquioxane amphiphilic hybrid copolymers. J. Polym. Sci., Part A: Polym. Chem. 48(1), 152 (2010).
24. Tan, B., Hussain, H., and He, C.: Tailoring micelle formation and gelation in (PEG−P(MA-POSS)) amphiphilic hybrid block copolymers. Macromolecules 44(3), 622 (2011).
25. Zheng, Y., Wang, L., Yu, R., and Zheng, S.: Synthesis and self-assembly behavior of organic–inorganic poly(ethylene oxide)-block-poly(MA POSS)-block-poly(N-isopropylacrylamide) triblock copolymers. Macromol. Chem. Phys. 213(4), 458 (2012).
26. Alves, F. and Nischang, I.: A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability. Polym. Chem. 6(12), 2183 (2015).
27. Xu, Y., Chen, M., Xie, J., Li, C., Yang, C., Deng, Y., Yuan, C., Chang, F-C., and Dai, L.: Synthesis, characterization and self-assembly of hybrid pH-sensitive block copolymer containing polyhedral oligomeric silsesquioxane (POSS). React. Funct. Polym. 73(12), 1646 (2013).
28. Chiefari, J., Chong, Y., Ercole, F., Krstina, J., Jeffery, J., Le, T.P., Mayadunne, R.T., Meijs, G.F., Moad, C.L., and Moad, G.: Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(16), 5559 (1998).
29. Xu, Y., Xie, J., Chen, L., Yuan, C., Pan, Y., Cheng, L., Luo, W., Zeng, B., and Dai, L.: A Novel Hybrid Random Copolymer Poly(MAPOSS-co-NIPAM-co-OEGMA-co-2VP): Synthesis, Characterization, Self-Assembly Behaviors and Multiple Responsive Properties. Macromol. Res. 21, 1338 (2013).
30. Jiwpanich, S., Ryu, J-H., Bickerton, S., and Thayumanavan, S.: Noncovalent encapsulation stabilities in supramolecular nanoassemblies. J. Am. Chem. Soc. 132(31), 10683 (2010).
31. Dinarvand, R. and D'Emanuele, A.: The use of thermoresponsive hydrogels for on-off release of molecules. J. Controlled Release 36(3), 221 (1995).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed