Skip to main content Accessibility help

The mineralization of polymer electrospun fibrous membranes modified with tourmaline nanoparticles

  • Jinsheng Liang (a1), Na Hui (a1), Tianyu Zhao (a1) and Hong Zhang (a1)


As distinctive spontaneous polarization and far-infrared radiation characteristics, the natural mineral tourmaline (TM) has the regulatory effect on crystallization behavior, which possesses potential application in biomimetic mineralization and bone regeneration. In this study, polyurethane (PU) and gelatin (GE) membranes with different adding proportion of TM nanoparticles were prepared via electrospinning. Additionally, the effect of TM nanoparticles on the mineralization process of hydrophobic PU and hydrophilic GE was investigated by immersing the composite TM/PU and TM/GE electrospun membranes in the 10× simulated body fluid (10SBF) at 37 °C for varying periods of time. SEM images confirmed the well-dispersed TM nanoparticles in the PU and GE electrospun fibers. The mineralization deposition was characterized by the SEM, EDS, XRD, and FTIR, and it indicated that two types of calcium phosphate deposits with different Ca/P molar ratios were obtained when TM/PU membranes and TM/GE membranes were incubated in 10SBF. Honeycomb-like hydroxyapatite crystals nucleated and grew faster on TM/PU and TM/GE membranes than the pure PU and GE membranes, respectively. Furthermore, with the increase of the added TM nanoparticles in the composite membranes, more calcium phosphate crystals were precipitated. These results showed that the added TM nanoparticles were able to improve the mineralization of polymer fibrous membranes, which is potential for the composite bone scaffold.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Rustom, L.E., Poellmann, M.J., and Wagoner Johnson, A.J.: Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater. 83, 435455 (2019).
2.Braem, A., Chaudhari, A., Vivan Cardoso, M., Schrooten, J., Duyck, J., and Vleugels, J.: Peri- and intra-implant bone response to microporous Ti coatings with surface modification. Acta Biomater. 10, 986995 (2014).
3.Xiu, P., Jia, Z., Lv, J., Yin, C., Cai, H., Song, C., Leng, H., Zheng, Y., Liu, Z., and Cheng, Y.: Hierarchical micropore/nanorod apatite hybrids in situ grown from 3-D printed macroporous Ti6Al4V implants with improved bioactivity and osseointegration. J. Mater. Sci. Technol. 33, 179186 (2017).
4.Jose, M.V., Thomas, V., Johnson, K.T., Dean, D.R., and Nyairo, E.: Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater. 5, 305315 (2009).
5.Ko, J.H., Yin, H.Y., An, J., and Chung, D.J.: Characterization of cross-linked gelatin nanofibers through electrospinning. Macromol. Res. 18, 137143 (2010).
6.Jin, Y., Yang, D., Zhou, Y., Ma, G., and Nie, J.: Photocrosslinked electrospun chitosan-based biocompatible nanofibers. J. Appl. Polym. Sci. 109, 33373343 (2008).
7.Zhang, H., Jia, X., Han, F., Zhao, J., Zhao, Y., Fan, Y., and Yuan, X.: Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials 34, 22022212 (2013).
8.Herrero-Herrero, M., Gómez-Tejedor, J.A., and Vallés-Lluch, A.: PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur. Polym. J. 99, 445455 (2018).
9.Hiep, N.T. and Lee, B.T.: Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J. Mater. Sci.: Mater. Med. 21, 19691978 (2010).
10.Yan, L.D., Si, S.X., Chen, Y., Yuan, T., Fan, H.J., Yao, Y.Y., and Zhang, Q.Y.: Electrospun in situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym. 12, 207213 (2011).
11.Nguyen, T.H., Padalhin, A.R., Seo, H.S., and Lee, B.T.: A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. J. Biomater. Sci., Polym. Ed. 24, 16921706 (2013).
12.Ritfeld, G.J., Rauck, B.M., Novosat, T.L., Park, D., Patel, P., Roos, R.A., Wang, Y., and Oudega, M.: The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials 35, 19241931 (2014).
13.Angeloni, V., Contessi, N., De, C.M., Bertoldi, S., Tanzi, M.C., and Farè, S.: Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomater. 63, 306316 (2017).
14.Wang, H., Feng, Y., Zhao, H., Xiao, R., Lu, J., Zhang, L., and Guo, J.: Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromol. Res. 20, 347350 (2012).
15.Xu, W., Wang, Z., Liu, Y., Wang, L., Jiang, Z., Li, T., Zhang, W., and Liang, Y.: Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr. Polym. 192, 240250 (2018).
16.Sattary, M., Khorasani, M.T., Rafienia, M., and Rozve, H.S.: Incorporation of nanohydroxyapatite and vitamin D3 into electrospun PCL/Gelatin scaffolds: The influence on the physical and chemical properties and cell behavior for bone tissue engineering. Polym. Adv. Technol. 29, 451462 (2018).
17.Nagarajan, S., Belaid, H., Pochat-Bohatier, C., Teyssier, C., Iatsunskyi, I., Coy, E., Balme, S., Cornu, D., Miele, P., Kalkura, N.S., Cavaillès, V., and Bechelany, M.: Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl. Mater. Interfaces 9, 3369533706 (2017).
18.Yao, S., Jin, B., Liu, Z., Shao, C., Zhao, R., Wang, X., and Tang, R.: Biomineralization: From material tactics to biological strategy. Adv. Mater. 29, 1605903 (2017).
19.Cai, Q., Feng, Q., Liu, H., and Yang, X.: Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(l-lactide)/gelatin composite fibrous mat as template. Mater. Lett. 91, 275278 (2013).
20.Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J.A., and Castano, O.: Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater. Sci. Eng., C 44, 183190 (2014).
21.Chen, J., Chu, B., and Hsiao, B.S.: Mineralization of hydroxyapatite in electrospun nanofibrous poly (L-lactic acid) scaffolds. J. Biomed. Mater. Res., Part A 79, 307317 (2006).
22.Yang, F., Wolke, J.G.C., and Jansen, J.A.: Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chem. Eng. J. 137, 154161 (2008).
23.Meng, Z., Li, H., Sun, Z., Zheng, W., and Zheng, Y.: Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater. Sci. Eng., C 33, 699706 (2013).
24.Yeh, J.T., Hsiung, H.H., Wei, W., Zhu, P., Chen, K.N., and Jiang, T.: Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites. J. Appl. Polym. Sci. 113, 10971110 (2009).
25.Tijing, L.D., Ruelo, M.T.G., Amarjargal, A., Pant, H.R., Park, C.H., Kim, D.W., and Kim, C.S.: Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem. Eng. J. 197, 4148 (2012).
26.Zhang, H., Lv, A., Liang, J., and Meng, J.: The preparation of TiO2 composite materials modified with Ce and tourmaline and the study of their photocatalytic activity. RSC Adv. 5, 5570455712 (2015).
27.Zhang, H., Li, P., Hui, N., and Liang, J.: PLCL electrospun fibers improved with tourmaline particles to prevent thrombosis. J. Controlled Release 259, e44e45 (2017).
28.Qiu, S., Ma, F., Yuan, W., and Xu, S.: Study on the biological effect of tourmaline on the cell membrane of E. coli. Surf. Interface Anal. 43, 10691073 (2011).
29.Jiang, S.Y., Radvane, M., Nakamura, E., Palmer, M., Kobayashi, K., Zhao, H., and Zhao, K.: Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution. Lithos 106, 111 (2018).
30.Wei, L., Ma, F., Wang, Q., Wang, H., and Zhang, X.: Investigation of the reduction performance of sulfate reducing bacteria enhanced by nano-meter/submicron tourmaline. J. Biotechnol. 136, S142 (2008).
31.Sekara, C., Kanchana, P., Nithyaselvi, R., and Girija, E.K.: Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal. Mater. Chem. Phys. 115, 2127 (2009).
32.Zhang, C., Zhang, W., Mao, L., Zhao, Y., and Yu, S.: Biomimetic mineralization of zein/calcium phosphate nanocomposite nanofibrous mats for bone tissue scaffolds. CrystEngComm 16, 95139519 (2014).
33.Zhao, J., Zhao, Y., Zhang, W., Yuan, X., and Yao, K.: Preparation and mineralization of PLGA/Gt electrospun fiber mats. Chin. Sci. Bull. 54, 13281333 (2009).


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Liang et al. supplementary material
Figure S1

 Word (31 KB)
31 KB

The mineralization of polymer electrospun fibrous membranes modified with tourmaline nanoparticles

  • Jinsheng Liang (a1), Na Hui (a1), Tianyu Zhao (a1) and Hong Zhang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.