Skip to main content Accessibility help

Microwave-hydrothermal synthesis and photoluminescence characteristics of zinc oxide powders

  • Chung-Hsin Lu (a1), Wen-Jeng Hwang (a1) and S.V. Godbole (a1)


A microwave-hydrothermal process for the synthesis of crystalline zinc oxide powders has been developed in this study. Well-crystallized zinc oxide powders exhibiting different morphology, crystallinity, and particle size have been successfully prepared by controlling the process temperature and molarity of NH4OH in the starting solution. With increasing process temperature and NH4OH molarity during synthesis, the morphology of ZnO powders changes from flowerlike agglomeration to a well-developed rodlike shape. The band gap of ZnO powders increases with a decrease in the molarity of NH4OH during synthesis. Vacuum ultraviolet radiation (VUV) excited luminescence studies for ZnO powders reveal an excitation band at 161 nm possibly due to the absorption of O2− 2p electrons in the valence band. The VUV excitation band of ZnO powders observed at 161 nm will be useful for excitation of gas-discharged plasma display devices.


Corresponding author

a) Address all correspondence to this author.e-mail:


Hide All
1.Natsume, Y. and Sakata, H.: Electrical conductivity and optical properties of ZnO films annealed in hydrogen atmosphere after chemical vapor deposition. J. Mater. Sci.-Mater. Electron. 12, 87 (2001).
2.Sundaram, K.B. and Khan, A.: Characterization and optimization of zinc oxide films by rf magnetron sputtering. Thin Solid Films 295, 87 (1997).
3.Ohta, H., Orita, M., Hirano, M. and Hosono, H.: Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO. J. Appl. Phys. 89, 5720 (2001).
4.Iwasaki, M., Inubushi, Y. and Ito, S.: New route to prepare ultrafine ZnO particles and its reaction mechanism. J. Mater. Sci. Lett. 16, 1503 (1997).
5.Eilers, H. and Tissue, B.M.: Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with CW-CO2 laser-heating. Mater. Lett. 24, 261 (1995).
6.Znaidi, L., Illia, G.J.A.A. Soler, Benyahia, S., Sanchez, C. and Kanaev, A.V.: Oriented ZnO thin films synthesis by sol-gel process for laser application. Thin Solid Films 428, 257 (2003).
7.Jezequel, D., Guenot, J., Jouini, N. and Fievet, F.: Submicrometer zinc-oxide particles-elaboration in polyol medium and morphological-characteristics. J. Mater. Res. 10, 77 (1995).
8.Andeen, D., Loeffler, L., Padture, N. and Lange, F.F.: Crystal chemistry of epitaxial ZnO on (111) MgAl2O4 produced by hydrothermal synthesis. J. Cryst. Growth 259, 103 (2003).
9.Lu, C.H. and Yeh, C.H.: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram. Int. 26, 351 (2000).
10.Komarneni, S., Roy, R. and Li, Q.H.: Microwave-hydrothermal synthesis of ceramic powder. Mater. Res. Bull. 27, 1393 (1992).
11.Bondioli, F., Ferrari, A.M., Leonelli, C., Siligardi, C. and Pellacani, G.C.: Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. J. Am. Ceram. Soc. 84, 2728 (2001).
12.Katsuki, H. and Komarneni, S.: Microwave-hydrothermal synthesis of monodispersed nanophase alpha-Fe2O3. J. Am. Ceram. Soc. 84, 2313 (2001).
13.Newalkar, B.L., Komarneni, S. and Katsuki, H.: Microwave-hydrothermal synthesis and characterization of barium titanate powders. Mater. Res. Bull. 36, 2347 (2001).
14.Komarneni, S., Komarneni, J.S., Newalkar, B.L. and Stout, S.: Microwave-hydrothermal synthesis of Al-substituted tobermorite from zeolites. Mater. Res. Bull. 37, 1025 (2002).
15.Kumada, N., Kinomura, N. and Komarneni, S.: Microwave hydrothermal synthesis of ABi2O6 (A = Mg, Zn). Mater. Res. Bull. 33, 1411 (1998).
16.Strachowski, T., Grzanka, E., Palosz, B., Presz, B., Slusarski, L. and Lojkowski, W.: Microwave driven hydrothermal synthesis of zinc oxide nanopowders. Solid State Phenomena 94, 187 (2003).
17.Zhong, J., Kitai, A.H., Mascher, P. and Puff, W.: The influence of processing conditions on point-defects and luminescence-centers in ZnO. J. Electrochem. Soc. 140, 3644 (1993).
18.Egelhaaf, H.J. and Oelkrug, D.: Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO. J. Cryst. Growth 161, 190 (1996).
19.Look, D.C., Coskun, C., Claflin, B. and Farlow, G.C.: Electrical and optical properties of defects and impurities in ZnO. Physica B 340–342, 32 (2003).
20.Yi, L.X., Xu, Z., Hou, Y.B., Zhang, X.Q., Wang, Y.S. and Xu, X.R.: The ultraviolet and blue luminescence properties of ZnO: Zn thin film. Chin. Sci. Bull. 46, 1223 (2001).
21.Fu, Z., Yang, B., Li, L., Jia, C. and Wu, W.: An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposites. J. Phys. Conden. Mater. 15, 2867 (2003).
22.Powder Diffraction File, Card No. 36-1451. International Center for Diffraction Data, Newtown Square, PA.
23.Chen, D., Jiao, X. and Cheng, G.: Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 113, 363 (2000).
24.Xu, H.Y., Wang, H., Zhang, Y.C., He, W.L., Zhu, M.K., Wang, B. and Yan, H.: Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceram. Int. 30, 93 (2004).
25.Koch, U., Fojtik, A., Weller, H. and Henglein, A.: Photochemistry of semiconductor colloids preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 122, 507 (1985).
26.Spanhel, L. and Anderson, M.A.: Semiconductor clusters in the sol-gel process-quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826 (1991).
27.Hoyer, P. and Weller, H.: Size-dependent redox potentials of quantized zinc-oxide measured with an optically transparent thin-layer electrode. Chem. Phys. Lett. 221, 379 (1994).
28.Redmond, G., Okeeffe, A., Burgess, C., Machale, C. and Fitzmaurice, D.: Spectroscopic determination of the flat-band potential of transparent nanocrystalline ZnO films. J. Phys. Chem. 97, 11081 (1993).
29.Noack, V. and Eychmuller, A.: Annealing of nanometer-sized zinc oxide particles. Chem. Mater. 14, 1411 (2002).
30.Ong, H.C., Li, A.S.K. and Du, G.T.: Depth profiling of ZnO thin films by cathodoluminescence. Appl. Phys. Lett. 78, 2667 (2001).
31.Shi, C.S., Fu, Z.X., Guo, C.X., Ye, X.L., Wei, Y.G., Deng, J., Shi, J.Y. and Zhang, G.B.: UV luminescence and spectral properties of ZnO films deposited on Si substrates. J. Elec. Spect. Rel. Phen. 103, 629 (1999).
32.Kohan, A.F., Ceder, G., Morgan, D. and Van Walle, C.G. de: First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019 (2000).
33.Lima, S.A.M., Sigoli, F.A., Jafelicci, M. Jr. and Davolos, M.R.: Luminescent properties and lattice defects correlation on zinc oxide. Int. J. Inorg. Mater. 3, 749 (2001).


Related content

Powered by UNSILO

Microwave-hydrothermal synthesis and photoluminescence characteristics of zinc oxide powders

  • Chung-Hsin Lu (a1), Wen-Jeng Hwang (a1) and S.V. Godbole (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.