Skip to main content Accessibility help
×
Home

Microwave sintering of high-density, high thermal conductivity AlN

  • Geng-fu Xu (a1), Tayo Olorunyolemi (a2), Otto C. Wilson (a3), Isabel K. Lloyd (a3) and Yuval Carmel (a2)...

Abstract

Microwave energy was used to sinter high thermal conductivity AlN ceramics (160–225 W/mK). The effects of sintering time, temperature, and amount of additive on phase composition, phase distribution, densification behavior, grain growth, and thermal conductivity were studied. The thermal conductivity of AlN was greatly improved by the addition of Y2O3, extended sintering time, and higher sintering temperatures. Thermal conductivity development in Y2O3-doped AlN showed two distinctive time regimes: (i) densification, where full densification, secondary phase formation, concentration and segregation, and rapid purification of AlN grains occur, accompanied by a large increase in thermal conductivity; (ii) postdensification, where grain growth and secondary phase sublimation/evaporation occur, yielding a further increase in thermal conductivity. Our results indicate that microwave sintering is a promising approach for synthesis of high thermal conductivity AlN ceramics.

Copyright

References

Hide All
1.Watari, K., J. Ceram. Soc. Jpn. 109, S7 (2001).
2.Baik, Y. and Drew, R.A.L., Key Eng. Mater. 122–124, 553 (1996).
3.Sheppard, L.M., Ceram. Bull. 69(11), 1801 (1990).
4.Kurokawa, Y., Utsumi, K., Takamizawa, H., Kamata, T., and Noguchi, S., IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol. CHMT-8, No. 2 (IEEE, Piscataway, NJ, 1990).
5.Miyashiro, F., Iwase, N., Akihiko, T., Ueno, Fumio, Nakahashi, M., and Takahashi, Takashi, IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol. 13, No. 2 (IEEE, Piscataway, NJ, 1985).
6.Shinozaki, K., Goto, Y., Tasori, K., Ueno, F., Anzai, K., and Tsuge, A., Proceedings of the 24th Symposium on Basic Science of Ceramics, Yogyo Kyokai, 1D13 (1986), p. 175.
7.Xu, G., Ph.D. thesis, University of Maryland (2001).
8.Virkar, A.F., Jackson, T.B., and Cutler, R.A., J. Am. Ceram. Soc. 72, 2031 (1989).
9.Hashimoto, N. and Yoden, H., J. Am. Ceram. Soc. 75, 2089 (1992).
10.Lecompte, J.P., Jarriage, J., and Mexmain, J., in Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff Publishers, Boston, MA, 1983), p. 293.
11.Trontelj, M. and Kolar, D., J. Mater. Sci. Lett. 8, 136 (1973).
12.Sutton, W.H., Am. Ceram. Soc. Bull. 68, 376 (1989).
13.Clark, D.E., Folz, D.E., Shultz, R.L., Fathi, Z., and Cozzi, A.D., MRS Bull. 18(11), 41 (1993).
14.Bykov, Yu.V., Rybakov, K.I., and Semenov, V.E., J. Phys. D: Appl. Phys. 34, R55 (2001).
15.Janney, M.A. and Kimrey, H.D., in Microwave Processing of Materials II, edited by Snyder, W.B., Sutton, W.H., Iskander, M.F., and Johnson, D.L. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1991), pp. 215217.
16.Wroe, R. and Rowley, A.T., J. Mater. Sci. 31, 2019 (1996).
17.Groombridge, P., Oloyede, A., and Siores, E., Trans. ASME, J. Manuf. Sci. Eng. 122, 253 (2000).
18.Janney, M.A., Kimrey, Hal D., and Kiggans, James O., in Microwave Processing of Materials III, edited by Beatty, R.L., Sutton, W.H., and Iskander, M.F. (Mat. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), pp. 173185.
19.Holcombe, C.E. and Dykes, N.L., J. Mater. Sci. 26, 3730 (1991).
20.Holcombe, E. and Dykes, N.L., in Ceramic Transactions Vol. 21, Microwaves: Theory and Application in Materials Processing, edited by Clark, D.E., Gac, F.D., and Sutton, W.H. (American Ceramic Society, Westerville, OH, 1991), pp. 375384.
21.Xu, G., Olorunyolemi, T., Carmel, Y., Lloyd, I.K., and Wilson, O.C. Jr., J. Am. Ceram. Soc. (submitted for publication).
22.Pert, E., Carmel, Y., Birnboim, A., Olorunyolemi, T., Gershon, D., Calame, J., Lloyd, I.K., and Wilson, O.C. Jr., J. Am. Ceram. Soc. 84, 1981 (2001).
23.Xu, G., Lloyd, I.K., Carmel, Y., Olorunyolemi, T., and Wilson, O.C. Jr., J. Mater. Res. 16, 2850 (2001).
24.Mendelson, M.I., J. Am. Ceram. Soc. 52, 443 (1969).
25.Hirano, M., Kato, K., Isobe, T., and Hirano, T., J. Mater. Sci. 28, 4725 (1993).
26.Cheng, J.P., Agrawal, Dinesh, Zhang, Yunjin, Drawl, B., and Roy, R., Am. Ceram. Soc. Bull. (9), 71 (2000).
27.Roth, R.S., Phase Diagram for Ceramists (Am. Ceram. Soc., Westerville, OH, 1995), Fig. 2344.
28.Jackson, T.B., Virkar, A.V., More, K.L., Dinwiddie, R.B., and Cutler, R.A., J. Am. Ceram. Soc. 80, 1421 (1997).
29.Tajika, M., Matsubara, H., and Rafaniello, W., J. Ceram. Soc. Jpn. 105, 928 (1997).
30.Mitra, S., Dutta, G., and Dutta, I., J. Am. Ceram. Soc. 78, 2334 (1995).
31.Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 19, 35 (1961).
32.Alexander, K.B., Becher, P.F., Waters, S.B., and Bleier, A., J. Am. Ceram. Soc. 77, 939 (1994).
33.Hirano, M., Kato, K., Isobe, T., and Hirano, T., J. Mater. Sci. 28, 4725 (1993).
34.Kuramote, N., Taniguchi, H., and Aso, I., Am. Ceram. Soc. Bull. 68(4), 883 (1989).
35.Kurokawa, Y., Utsumi, K., and Takamizawa, H., J. Am. Ceram. Soc. 71, 588 (1989).
36.Ichinose, N., Mater. Chem. Phys. 42, 176 (1995).
37.Kawati, K., Kawamoto, M., and Ishizaki, K., J. Mater. Sci. 26, 4727 (1991).
38.Rybakov, K. and Semenov, V.E., Phys. Rev. B 52, 3030 (1995).
39.Birnboim, A., Calame, J.P., and Carmel, Y., J. Appl. Phys. 81, 1 (1999).

Microwave sintering of high-density, high thermal conductivity AlN

  • Geng-fu Xu (a1), Tayo Olorunyolemi (a2), Otto C. Wilson (a3), Isabel K. Lloyd (a3) and Yuval Carmel (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed