Skip to main content Accessibility help

Microwave sintering and properties of AlN/TiB2 composites

  • Geng-fu Xu (a1), Yuval Carmel (a2), Tayo Olorunyolemi (a2), Isabel K. Lloyd (a3) and Otto C. Wilson (a3)...


The effect of TiB2 on the densification behavior and properties of microwave-sintered AlN/TiB2 ceramic was investigated. The densification of the composite was significantly retarded in nitrogen atmosphere due to strong nitridation of TiB2 compared to sintering in argon atmosphere. The densities of the AlN/TiB2 composites containing different amounts of TiB2 all reached 99% of the theoretical density during 2 h of sintering at 1850 and 1900 °C. Microstructure analysis revealed that the TiB2 particles were dispersed in the AlN matrix while AlN grains retained its contiguity. This microstructure led to a composite with superior properties; thermal conductivity as high as 149 W/(m K) was achieved. The microwave sintered composites are harder and tougher than pure AlN. Microwave-sintered AlN/TiB2 composite is a promising material for structural applications in which high thermal conductivity and controlled dielectric loss are important.



Hide All
1.Hale, D.K., J. Mater. Sci. 11, 2105 (1976).
2.Hatta, H. and Taya, M., Int. J. Eng. Sci. 24, 1159 (1986).
3.Calame, J.P. and Abe, D.K., Applications of Advanced Materials Technologies to Vacuum Electronic Devices, Proceedings of the IEEE (IEEE, Piscataway, NJ, 1999), Vol. 87, pp. 840864.
4.Borom, M.P., Slack, G.A., and Szymaszek, J.W., Am. Ceram. Soc. Bull. 51(11), 852 (1972).
5.Bhatt, H., Donaldson, K.Y., Hasselman, D.P.H., and Bhatt, R.T., J. Mater. Sci. 27, 6653 (1992).
6.Hasselman, D.P.H., in 20th International Thermal Conductivity Conference, edited by Hasselman, D.P.H. (Plenum Press, New York, 1989), pp. 141152.
7.Behrens, E., J. Compos. Mater. 2, 2 (1968).
8.Xu, G-f., Olorunyolemi, T., Carmel, Y., Wilson, O.C., Jr., and Lloyd, I.K., J. Mater. Res. 17(11), 2837 (2002).
9.Xu, G-f., Carmel, Y., Olorunyolemi, T., Wilson, O.C., Jr., and Lloyd, I.K., J. Am. Ceram. Soc. (in press).
10.Antis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64(9), 533 (1981).
11.Samsonov, G.V. and Vinitskii, I.M., Refractory Compounds Handbook (in Russ.) (Mettalurgiya, Moscow, U.S.S.R., 1976).
12.Advanced Materials & Powders Handbook (American Ceramic Society Bulletin, Westerville, OH, 1999), pp. 6981.
13.Kittel, C., Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1997).
14.Hasselman, D.P. and Johnson, E.F., J. Compos. Mater. 21(5), 508 (1987).
15.Benveniste, Y., J. Appl. Phys. 61, 2840 (1987).
16.Jackson, T.B., Vircar, A.V., More, K.L., Dinwiddie, R.B., Jr., and Cutler, R.A., J. Am. Ceram. Soc. 80, 1421 (1997).
17.Chang, E.K. and Kirschner, M.J., J. Mater. Sci. Lett. 15, 1580 (1996).
18.Buhr, H., Müller, G., Wiggers, H., Aldinger, F., Foley, P., Roosen, A., J. Am. Ceram. Soc. 74, 718 (1991).
19.Bentsen, L.D., Hasselman, D.P.H., and Ruh, R., J. Am. Ceram. Soc. 66, C-4 (1983).
20.Rafanieo, W., Cho, K., and Vircar, A., J. Mater. Sci. 16(12), 3479 (1981).
21.Schneider, S.V., Desmaison-brut, M., Richter, G., Porz, F., Gault, C., Key Eng. Mater. 132–136, 524 (1997).
22.Faber, K.T. and Evans, A.G., Acta Metall. 31, 565 (1983).
23.Evans, A.G. and Faber, K.T., J. Am. Ceram. Soc. 67, 394 (1981).
24.Tara, M., Hayashi, S., Kobayashi, A.S., and Yoon, H.S., J. Am. Ceram. Soc. 73, 1382 (1990).

Microwave sintering and properties of AlN/TiB2 composites

  • Geng-fu Xu (a1), Yuval Carmel (a2), Tayo Olorunyolemi (a2), Isabel K. Lloyd (a3) and Otto C. Wilson (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed