Skip to main content Accessibility help

Microstructures and nanostructures in long-term annealed AgPb18SbTe20 (LAST-18) compounds and their influence on the thermoelectric properties

  • Jayaram Dadda (a1), Eckhard Müller (a1), Susanne Perlt (a2), Thomas Höche (a2), Paula Bauer Pereira (a3) and Raphaël P. Hermann (a3)...


This article reports on the role of annealing on the development of microstructure and its concomitant effects on the thermoelectric properties of polycrystalline AgPbmSbTe2+m (m = 18, lead–antimony–silver–tellurium, LAST-18) compounds. The annealing temperature was varied by applying a gradient annealing method, where a 40-mm-long sample rod was heat treated in an axial temperature gradient spanning between 200 and 600 °C for 7 days. Transmission electron microscopy investigations revealed Ag2Te nanoparticles at a size of 20–250 nm in the matrix. A remarkable reduction in the thermal conductivity to as low as 0.8 W/mK was also recorded. The low thermal conductivity coupled with a large Seebeck coefficient of ∼320 μV/K led to high ZT of about 1.05 at 425 °C for the sample annealed at 505 °C. These results also demonstrate that samples annealed above 450 °C for long term are more thermally stable than those treated at lower temperatures.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Bell, L.E.: Cooling, heating, generating power and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).
2.Hachiuma, H. and Fukuda, K.: Activities and future vision of Komatsu thermo modules, in Proceedings of the Fifth European Conference on Thermoelectrics, Paper 01, September 10–12, 2007, p. 1.
3.Zhou, M., Li, J-F., and Kita, T.: Nanostructured AgPbmSbTem +2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).
4.Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).
5.Quarez, E., Hsu, K.F., Pcionek, R., Frangis, N., Polychroniadis, E.K., and Kanatzidis, M.G.: Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions. J. Am. Chem. Soc. 127, 9177 (2005).
6.Cook, B.A., Kramer, M.J., Harringa, J.L., Han, M-K., Chung, D-Y., and Kanatzidis, M.G.: Analysis of nanostructuring in high figure-of-merit Ag1-xPbmSbTe2+m thermoelectric materials. Adv. Funct. Mater. 19, 1254 (2009).
7.Kanatzidis, M.: Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 22, 648 (2010).
8.Vineis, C.J., Shakouri, A., Majumdar, A., and Kanatzidis, M.G.: Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).
9.Kosuga, A., Uno, M., Kurosaki, K., and Yamanaka, S.: Thermoelectric properties of Ag1-xPb18SbTe20 (x = 0, 0.1, 0.3). J. Alloy. Comp. 387, 52 (2005).
10.Chen, N., Gascoin, F., Snyder, G.J., Mueller, E., Karpinski, G., and Stiewe, C.: Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x (PbTe)1-x. Appl. Phys. Lett. 87, 171903 (2005).
11.Yan, Y., Tang, X., Liu, H., Yin, L., and Zhang, Q.: Cooling rate dependence of microstructure and thermoelectric properties of AgPb18SbTe20 compound, in Proceedings of the International Conference on Thermoelectrics, Jeju Island, Korea, 2007, pp. 61–63.
12.Sootsman, J., Pcionek, R., Kong, H., Uher, C., and Kanatzidis, M.G.: Phase segregation and thermoelectric properties of AgPbmSbTe2+m (m = 2, 4, 6 and 8). Mater. Res. Soc. Symp. 886, 0886–F08-05.1 (2006).
13.Sootsman, J.R., Pcionek, R.J., Kong, H., Uher, C., and Kanatzidis, M.G.: Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chem. Mater. 18, 4993 (2006).
14.Bilc, D.I., Mahanti, S.D., and Kanatzidis, M.G.: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006).
15.Hazama, H., Mizutani, U., and Asahi, R.: First-principles calculations of Ag-Sb nanodot formation in thermoelectric AgPbmSbTe2+m (m = 6, 14, 30). Phys. Rev. B 73, 115108 (2006).
16.Rodriguez-Carvajal, J.: FULLPROF: A program for Rietveld refinement and pattern matching analysis. Abs. Sat. Meet Powder Diff. XV Cong. IUCr, Toulouse, France, 1990, p. 127.
17.Migliori, A., Sarrao, J.L., Visscher, W.M., Bell, T.M., Lei, M., Fisk, Z., and Leisure, R.G.: Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B 183, 1 (1993).
18.ANSYS Academic Research Release 11.0 Product Documentation, Help System, Thermal Analysis Guide, Chapter 2. Steady State Thermal Analysis (ANSYS, Inc., 2007), p. 11.
19.Gierlotka, W., £apsa, J., and Fitzner, K.: Thermodynamic description of the Ag–Pb–Te ternary system. J. Phase Equilib. Diffus. 31, 509 (2010).
20.Henger, G.W. and Peretti, E.A.: Constitution diagram for the PbTe-Sb system. J. Chem. Eng. Data 10, 16 (1965).
21.Lee, B-Z., Oh, C-S., and Lee, D.N.: A thermodynamic evaluation of the Ag–Pb–Sb system. J. Alloy. Comp. 215, 293 (1994).
22.Sharov, M.K.: Silver solubility in PbTe crystals. Inorg. Mater. 44, 569 (2008).
23.Dow, H.S., Oh, M.W., Kim, B.S., Park, S.D., Min, B.K., Lee, H.W., and Wee, D.M.: Effect of Ag or Sb additions on the thermoelectric properties of PbTe. J. Appl. Phys. 108, 113709 (2010).
24.Blachnik, R. and Gather, B.: Mischungen von GeTe, SnTe und PbTe mit Ag2Te – Ein Beitrag zur Klärung der Konstitution der ternären Ag-IVb-Te Systeme (IVb = Ge, Sn, Pb). J. Less-Common Met. 60, 25 (1987).
25.Sugar, J.D. and Medlin, D.L.: Precipitation of Ag2Te in the thermoelectric material AgSbTe2. J. Alloy. Comp. 478, 75 (2009).
26.Ikeda, T., Ravi, V.A., and Snyder, G.J.: Microstructure size control through cooling rate in thermoelectric PbTe–Sb2Te3 composites. Metall. Mater. Trans. A 41, 641 (2010).
27.Maier, R.G.: Zur Kenntnis des Systems PbTe–AgSbTe2. Z. Metallk. 54, 311 (1963).
28.Barabash, S.V., Ozolins, V., and Wolverton, C.: First-principles theory of competing order types, phase separation, and phonon spectra in thermoelectric AgPbmSbTe2+m alloys. Phys. Rev. Lett. 101, 155704 (2008).
29.Wada, K., Suzuki, A., Sato, H., and Kikuchi, R.: Soret effect in solids. J. Phys. Chem. Solids 46, 1195 (1985).
30.Manolikas, C.: A study by means of electron microscopy and electron diffraction of the phase transformation and the domain structure in Ag2Te. J. Solid State Chem. 66, 1 (1987).
31.Lensch-Falk, J.L., Sugar, J.D., Hekmaty, M.A., and Medlin, D.L.: Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J. Alloy. Comp. 504, 37 (2010).
32.Das, V.D. and Karunakaran, D.: Thickness dependence of the phase transition temperature in Ag2Te thin films. J. Phys. Chem. Solids 46, 551 (1985).
33.Aliev, F.F.: Electrical and thermoelectric properties of p-Ag2Te in the β phase. Semiconductors 37, 1057 (2003).
34.Ren, F., Case, E.D., Ni, J.E., Timm, E.J., Lara-Curzio, E., Trejo, R.M., Lin, C.H., and Kanatzidis, M.G.: Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos. Mag. Lett. 89, 143 (2009).
35.Allgaier, R.S. and Scanlon, W.W.: Mobility of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2 °K. Phys. Rev. 111, 1029 (1958).
36.Pei, Y., Lensch-Falk, J., Toberer, E.S., Medlin, D.L., and Snyder, G.J.: High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv. Funct. Mater. 21, 241 (2011).
37.Strauss, A.J.: Effect of Pb- and Te-saturation on carrier concentrations in impurity-doped PbTe. J. Electron. Mater. 2, 553 (1973).
38.Rowe, D.M.: Thermoelectrics Handbook, 2nd ed. (CRC Press, Taylor & Francis Group, USA, 2006), pp. 1–16.


Microstructures and nanostructures in long-term annealed AgPb18SbTe20 (LAST-18) compounds and their influence on the thermoelectric properties

  • Jayaram Dadda (a1), Eckhard Müller (a1), Susanne Perlt (a2), Thomas Höche (a2), Paula Bauer Pereira (a3) and Raphaël P. Hermann (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed