Skip to main content Accessibility help
×
Home

Microstructures and mechanical properties of bulk nanocrystalline silver fabricated by spark plasma sintering

  • Hu Wang (a1), Xing-Wang Cheng (a2), Zhao-Hui Zhang (a2), Zheng-Yang Hu (a1) and Sheng-Lin Li (a1)...

Abstract

Bulk nanocrystalline (NC) silvers were fabricated by spark plasma sintering process. The effects of sintering temperature on physical and mechanical properties of the NC silvers were investigated. The results indicate that no impurities were introduced into the bulk compacts during the preparation procedure. Both the density and the electrical conductivity of the NC Ag increase with an increase in sintering temperature. However, the micro-hardness and ultimate tensile strength (UTS) of the bulk compacts increase initially and then decrease with increasing sintering temperature. The NC Ag sintered at 500 °C exhibits the highest micro-hardness of 85.3 HV along with the best compression yield strength of 379 MPa and the highest UTS of 534 MPa. The deterioration of the mechanical properties of the NC Ag sintered at 550 °C should be attributed to the rapid grain growth.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: zhang@bit.edu.cn

References

Hide All
1. Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).
2. Lu, K.: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996).
3. Liu, Z.F., Zhang, Z.H., Korznikov, A.V., Lu, J.F., Korznikova, G., and Wang, F.C.: A novel and rapid route for synthesizing nanocrystalline aluminum. Mater. Sci. Eng., A 615, 320 (2014).
4. Wen, H.M., Topping, T.D., Isheim, D., Seidman, D.N., and Lavernia, E.J.: Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 61, 2769 (2013).
5. Srinivasarao, B., Oh-ishi, K., Ohkubo, T., and Hono, K.: Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3277 (2009).
6. Liu, Z.F., Zhang, Z.H., Lu, J.F., Korznikov, A.V., Korznikova, E., and Wang, F.C.: Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater. Des. 64, 625 (2014).
7. Liu, G., Zhang, G.J., Jiang, F., Ding, X.D., Sun, Y.J., Sun, J., and Ma, E.: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344 (2013).
8. Wu, X.L., Jiang, P., Chen, L., Yuan, F.P., and Zhu, Y.T.: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 111, 7197 (2014).
9. Kou, H.N., Lu, J., and Li, Y.: High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26, 5518 (2014).
10. Lu, K.: Making strong nanomaterials ductile with gradients. Science 345, 1455 (2014).
11. Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).
12. Mazilkin, A.A., Straumal, B.B., Rabkin, E., Baretzky, B., Enders, S., Protasova, S.G., Kogtenkova, O.A., and Valiev, R.Z.: Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation. Acta Mater. 54, 3933 (2006).
13. Lin, F.X., Zhang, Y.B., Tao, N.R., Pantleon, W., and Juul Jensen, D.: Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation. Acta Mater. 72, 252 (2014).
14. Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungár, T., Wang, Y.M., Ma, E., and Valiev, R.Z.: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908 (2003).
15. Beyerlein, I.J., Mara, N.A., Carpenter, J.S., Nizolek, T., Mook, W.M., Wynn, T.A., McCabe, R.J., Mayeur, J.R., Kang, K., Zheng, S., Wang, J., and Pollock, T.M.: Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu–Nb multilayers fabricated by severe plastic deformation. J. Mater. Res. 28, 1799 (2013).
16. Wei, Q., Pan, Z.L., Wu, X.L., Schuster, B.E., Kecskes, L.J., and Valiev, R.Z.: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59, 2423 (2011).
17. Rupp, J.L.M., Solenthaler, C., Gasser, P., Muecke, U.P., and Gauckler, L.J.: Crystallization of amorphous ceria solid solutions. Acta Mater. 55, 3505 (2007).
18. Yazdani, A., Hadianfard, M.J., and Salahinejad, E.: A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling. J. Alloys Compd. 555, 108 (2013).
19. Javanbakht, M., Hadianfard, M.J., and Salahinejad, E.: Microstructure and mechanical properties of a new group of nanocrystalline medical-grade stainless steels prepared by powder metallurgy. J. Alloys Compd. 624, 17 (2015).
20. Matsui, I., Mori, H., Kawakatsu, T., Takigawa, Y., Uesugi, T., and Higashi, K.: Enhancement in mechanical properties of bulk nanocrystalline Fe–Ni alloys electrodeposited using propionic acid. Mater. Sci. Eng., A 607, 505 (2014).
21. Varam, S., Rajulapati, K.V., and Bhanu Sankara Rao, K.: Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation. J. Alloys Compd. 585, 795 (2014).
22. Wang, S.G., Huang, Y.J., Han, H.B., Sun, M., Long, K., and Zhang, Z.D.: The electrochemical corrosion characterization of bulk nanocrystalline aluminium by x-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy. J. Electroanal. Chem. 724, 95 (2014).
23. Zhang, Z.H., Liu, Z.F., Lu, J.F., Shen, X.B., Wang, F.C., and Wang, Y.D.: The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr. Mater. 81, 56 (2014).
24. Zhang, Z.H., Wang, F.C., Lee, S.K., Liu, Y., Cheng, J.W., and Liang, Y.: Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process. Mater. Sci. Eng., A 523, 134 (2009).
25. Zhang, L., Elwazri, A.M., Zimmerly, T., and Brochu, M.: Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique. Mater. Sci. Eng., A 487, 219 (2008).
26. Sweet, G.A., Brochu, M., Hexemer, R.L. Jr., Donaldson, I.W., and Bishop, D.P.: Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater. Sci. Eng., A 648, 123 (2015).
27. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).
28. Sweet, G.A., Brochu, M., Hexemer, R.L. Jr., Donaldson, I.W., and Bishop, D.P.: Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering. Mater. Sci. Eng., A 608, 273 (2014).
29. Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A., Tacca, A., Maglia, F., and Spinolo, G.: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 3255 (2004).
30. Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., and Herrmann, M.: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).
31. Fu, Y.Q., Shearwood, C., Xu, B., Yu, L.G., and Khor, K.A.: Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21, 115707 (2010).
32. Marek, I., Vojtěch, D., Michalcová, A., and Kubatík, T.F.: High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater. Sci. Eng., A 627, 326 (2015).
33. Wu, H., Wen, S.P., Wu, X.L., Gao, K.Y., Huang, H., Wang, W., and Nie, Z.R.: A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater. Sci. Eng., A 639, 307 (2015).
34. Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
35. Holzwarth, U. and Gibson, N.: The Scherrer equation versus the ‘Debye-Scherrer equation'. Nat. Nanotechnol. 6, 534 (2011).
36. Fellah, F., Schoenstein, F., Dakhlaoui Omrani, A., Chérif, S.M., Dirras, G., and Jouini, N.: Nanostructured cobalt powders synthesised by polyol process and consolidated by spark plasma sintering: Microstructure and mechanical properties. Mater. Charact. 69, 1 (2012).
37. Zhu, Y.T., Narayan, J., Hirth, J.P., Mahajan, S., Wu, X.L., and Liao, X.Z.: Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater. 57, 3763 (2009).
38. Li, X.Y., Wei, Y.J., Lu, L., Lu, K., and Gao, H.J.: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).
39. Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).
40. Yu, X.H., Rong, J., Zhan, Z.L., Liu, Z., and Liu, J.X.: Effects of grain size and thermodynamic energy on the lattice parameters of metallic nanomaterials. Mater. Des. 83, 159 (2015).
41. Barbosa, P., Rosero-Navarro, N.C., Shi, F., and Figueiredo, F.M.L.: Protonic conductivity of nanocrystalline zeolitic imidazolate framework 8. Electrochim. Acta 153, 19 (2015).
42. Muecke, U.P., Graf, S., Rhyner, U., and Gauckler, L.J.: Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films. Acta Mater. 56, 677 (2008).
43. Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
44. Hu, T., Ma, K., Topping, T.D., Saller, B., Yousefiani, A., Schoenung, J.M., and Lavernia, E.J.: Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle. Scr. Mater. 78–79, 25 (2014).
45. Khan, A.S., Suh, Y.S., Chen, X., Takacs, L., and Zhang, H.Y.: Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int. J. Plast. 22, 195 (2006).
46. Liu, R., Zhang, Z.J., Li, L.L., An, X.H., and Zhang, Z.F.: Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys. Sci. Rep. 5, 9550 (2015).

Keywords

Related content

Powered by UNSILO

Microstructures and mechanical properties of bulk nanocrystalline silver fabricated by spark plasma sintering

  • Hu Wang (a1), Xing-Wang Cheng (a2), Zhao-Hui Zhang (a2), Zheng-Yang Hu (a1) and Sheng-Lin Li (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.