Skip to main content Accessibility help
×
Home

Microstructure, texture, and enhanced mechanical properties of an extruded Mg–rare earth alloy after hot compression

  • Yi Ping Wu (a1), Xin Ming Zhang (a2), Yun Lai Deng (a2) and Chang Ping Tang (a2)

Abstract

An extruded Mg–8Gd–4Y–1Nd–0.5Zr alloy was preheated at 500 °C for 0.5 h and then subjected to hot compression to a true strain of 0.69 at temperature 450 °C and a strain rate of 0.2 s−1. It is observed that boundaries of small grains (∼3 μm) in the extruded alloy are decorated with irregular-shaped particles; small grains show a weak texture of three main components of $\left\langle {0001} \right\rangle //{\rm{TD}}$ , $\left\langle {11\overline 2 1} \right\rangle //{\rm{ND}}$ , and $\left\langle {10\overline 1 0} \right\rangle //{\rm{ED}}$ . Dynamic recrystallization is concurrent with dynamic precipitation of particles during hot compression, resulting in both a uniform grain structure and a redistribution of particles. The retained particles before compression keep the texture unchanged during compression, leading to the same texture type of $\left\langle {0001} \right\rangle //{\rm{TD}}$ of the compressed alloy as that of the preheated alloy. The compressed alloy exhibits a better aging hardening ability than the extruded alloy. After peak aging, the compressed alloy presents an ultimate tensile strength of 416 MPa, a yield tensile strength of 317 MPa, and an elongation of 2.7%.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: wuyipingjia@126.com

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Liang, S., Guan, D., Tan, X., Chen, L., and Tang, Y.: Effect of isothermal aging on the microstructure and properties of as-cast Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 528, 1589 (2011).
2. Tang, C.P., Yang, L., Feng, D., Deng, Y.L., and Zhang, X.M.: Investigation on microstructure and mechanical properties of a Mg–Gd–Y–Zr Alloy plate. Mater. Manuf. Processes 27, 609 (2012).
3. Zhang, X.M., Tang, C.P., Deng, Y.L., Yang, L., and Liu, W.J.: Phase transformation in Mg–8Gd–4Y–Nd–Zr alloy. J. Alloys Compd. 509, 6170 (2011).
4. Bohlen, J., Yi, S., Letzig, D., and Kainer, K.U.: Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater. Sci. Eng., A 527, 7092 (2010).
5. Mirza, F.A., Chen, D.L., Li, D.J., and Zeng, X.Q.: Effect of rare earth elements on deformation behavior of an extruded Mg–10Gd–3Y–0.5Zr alloy during compression. Mater. Des. 46, 411 (2013).
6. Stanford, N. and Barnett, M.: The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng., A 496, 399 (2008).
7. Wu, W.X., Jin, L., Wang, F.H., Sun, J., Zhang, Z.Y., Ding, W.J., and Dong, J.: Microstructure and texture evolution during hot rolling and subsequent annealing of Mg–1Gd alloy. Mater. Sci. Eng., A 582, 194 (2013).
8. Zhu, T.L., Sun, J.F., Cui, C.L., Wu, R.Z., Betsofen, S., Leng, Z., Zhang, J.H., and Zhang, M.L.: Influence of Y and Nd on microstructure, texture and anisotropy of Mg–5Li–1A1 alloy. Mater. Sci. Eng., A 600, 1 (2014).
9. Bohlen, J., Nürnberg, M.R., Senn, J.W., Letzig, D., and Agnew, S.R.: The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 55, 2101 (2007).
10. Ball, E.A. and Prangnell, P.B.: Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr. Metall. Mater. 31, 111 (1994).
11. Al-Samman, T. and Li, X.: Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng., A 528, 3809 (2011).
12. Hou, X., Peng, Q., Cao, Z., Xu, S., Kamado, S., Wang, L., Wu, Y., and Wang, L.: Structure and mechanical properties of extruded Mg–Gd based alloy sheet. Mater. Sci. Eng., A 520, 162 (2009).
13. Liu, X., Le, Q., Zhang, Z., Bao, L., and Cui, J.: Effects of Nd/Gd ratio on the microstructures and mechanical properties of Mg–Gd–Y–Nd–Zr alloys. Indian J. Eng. Mater. Sci. 22, 14 (2015).
14. Peng, Q., Wang, J., Wu, Y., and Wang, L.: Microstructures and tensile properties of Mg–8Gd–0.6Zr–xNd–yY (x + y = 3, mass%) alloys. Mater. Sci. Eng., A 433, 133 (2006).
15. Li, L., Zhang, X.M., Deng, Y.L., and Tang, C.P.: Superplasticity and microstructure in Mg–Gd–Y–Zr rolled sheet. J. Alloys Compd. 485, 295 (2009).
16. Wu, Y.P., Zhang, X.M., Deng, Y.L., Tang, C.P., and Zhong, Y.Y.: Effect of secondary extrusion on the microstructure and mechanical properties of a Mg–RE alloy. Mater. Sci. Eng., A 616, 148 (2014).
17. Farzadfar, S.A., Sanjari, M., Jung, I.H., Essadiqi, E., and Yue, S.: Role of yttrium in the microstructure and texture evolution of Mg. Mater. Sci. Eng., A 528, 6742 (2011).
18. Al-Samman, T., Li, X., and Chowdhury, S.G.: Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy. Mater. Sci. Eng., A 527, 3450 (2010).
19. Chang, L.L., Wang, Y.N., Zhao, X., and Qi, M.: Grain size and texture effect on compression behavior of hot-extruded Mg–3Al–1Zn alloys at room temperature. Mater. Charact. 60, 991 (2009).
20. Choi, S.H., Kim, J.K., Kim, B.J., and Park, Y.B.: The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng., A 488, 458 (2008).
21. Dobroň, P., Chmelík, F., Yi, S., Parfenenko, K., Letzig, D., and Bohlen, J.: Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scr. Mater. 65, 424 (2011).
22. Wang, B., Xin, R., Huang, G., and Liu, Q.: Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Mater. Sci. Eng., A 534, 588 (2012).
23. Shi, B.Q., Chen, R.S., and Ke, W.: Effects of forging processing on the texture and tensile properties of ECAEed AZ80 magnesium alloy. Mater. Sci. Eng., A 546, 323 (2012).
24. Wang, S., Kang, S., and Cho, J.: Effect of hot compression and annealing on microstructure evolution of ZK60 magnesium alloys. J. Mater. Sci. 44, 5475 (2009).
25. Hadorn, J.P., Hantzsche, K., Yi, S.B., Bohlen, J., Letzig, D., Wollmershauser, J., and Agnew, S.R.: Role of solute in the texture modification during hot deformation of Mg-rare earth alloys. Metall. Mater. Trans. A 43, 1347 (2012).
26. Li, L.: Deformation band and texture of a cast Mg–RE alloy under uniaxial hot compression. Mater. Sci. Eng., A 528, 7178 (2011).
27. Xia, X., Zhang, K., Li, X., Ma, M., and Li, Y.: Microstructure and texture of coarse-grained Mg–Gd–Y–Nd–Zr alloy after hot compression. Mater. Des. 44, 521 (2013).
28. Cottam, R., Robson, J., Lorimer, G., and Davis, B.: Dynamic recrystallization of Mg and Mg–Y alloys: Crystallographic texture development. Mater. Sci. Eng., A 485, 375 (2008).
29. Stanford, N., Atwell, D., and Barnett, M.R.: The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 58, 6773 (2010).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed