Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T22:52:30.263Z Has data issue: false hasContentIssue false

Microstructure modification of amorphous carbon films by ion-implantation techniques

Published online by Cambridge University Press:  31 January 2011

B. Wei
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
K. Komvopoulos
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
I. G. Brown
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

Microstructure modification of amorphous carbon films containing about 30 at.% hydrogen (a-CHx) and nonhydrogenated amorphous carbon (a-C) films was accomplished with a vacuum arc metal plasma implanter and a cathodic arc plasma system, respectively. The films were implanted with Si, Ti, Hf, W, and Al of ion doses approximately equal to 1 and 3 × 1016 ions/cm2 and mean ion kinetic energies in the range of 3–70 keV, depending on the implantation method. Simulation results demonstrated a profound effect of the size of implant species, ion dose, mean ion kinetic energy, and implantation processes on the implant spatial distributions. Statistical roughness results showed a negligible effect of ion implantation on the film surface topography. Elastic recoil spectroscopy revealed a decrease in the hydrogen content of the a-CHx films due to the ion bombardment. A monotonic decrease in the Raman scattering intensities and a downward shift of the carbon peak position occurred with increasing ion dose for both types of films and implantation techniques. Nanoindentation experiments demonstrated an effect of ion implantation on the apparent film hardness, depending on the flux and kinetic energy of implanted species. Changes in the hardness characteristics of the implanted films are interpreted in terms of the chemical reactivity of implant elements and microstructure modifications caused by irradiation damage, dehydrogenation, and higher contents of tetrahedral (s p3) carbon hybridization due to carbide bond formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Craig, S. and Harding, G. L., Thin Solid Films 97, 345 (1982).CrossRefGoogle Scholar
2.Enke, K., Appl. Opt. 24, 508 (1985).CrossRefGoogle Scholar
3.Natarajan, V., Lamb, J.D., Woollam, J. A., Liu, D. C., and Gulino, D. A., J. Vac. Sci. Technol. A 3, 681 (1985).Google Scholar
4.McKenzie, D. R., McPhedran, R. C., Botten, L. C., Savvides, N., and Netterfield, R. P., Appl. Opt. 21, 3615 (1982).CrossRefGoogle Scholar
5.Weissmantel, C., J. Vac. Sci. Technol. 18, 179 (1981).CrossRefGoogle Scholar
6.Grill, A., Meyerson, B. S., and Patel, V. V., IBM J. Res. Develop. 34, 849 (1990).Google Scholar
7.Prawer, S., Kalish, R., Adel, M., and Richter, V., Appl. Phys. Lett. 49, 1157 (1986).Google Scholar
8.Prawer, S., Kalish, R., Adel, M., and Richter, V., J. Appl. Phys. 61, 4492 (1987).Google Scholar
9.Prawer, S., Kalish, R., and Adel, M., Appl. Phys. Lett. 48, 1585 (1986).Google Scholar
10.Adel, M. E., Kalish, R., and Prawer, S., J. Appl. Phys. 62, 4096 (1987).Google Scholar
11.Adel, M. E., Amir, O., Kalish, R., and Feldman, L. C., J. Appl. Phys. 66, 3248 (1989).CrossRefGoogle Scholar
12.Zou, J. W., Schmidt, K., Reichelt, K., and Stritzker, B., J. Vac. Sci. Technol. A 6, 3103 (1988).CrossRefGoogle Scholar
13.Dischler, B., Bubenzer, A., and Koidl, P., Solid State Commun. 48, 105 (1983).Google Scholar
14.González-Hernández, J., Asomoza, R., Reyes-Mena, A., Rickards C, J., Chao, S. S., and Pawlik, D., J. Vac. Sci. Technol. A 6, 1798 (1988).Google Scholar
15.McKenzie, D. R., Müller, D., Pailthorpe, B. A., Wang, Z. H., Kravtchinskaia, E., Segal, D., Lukins, P. B., Swift, P. D., Martin, P. J., Amaratunga, G., Gaskell, P. H., and Saeed, A., Diamond Relat. Mater. 1, 51 (1991).Google Scholar
16.Anders, S., Anders, A., Brown, I. G., Wei, B., Komvopoulos, K., Ager, J. W. III, and Yu, K. M., Surf. Coat. Technol. 68–69, 388 (1994).Google Scholar
17.Robertson, J., J. Non-Cryst. Solids 164–166, 1115 (1993).CrossRefGoogle Scholar
18.Komvopoulos, K., Wei, B., Anders, S., Anders, A., and Brown, I. G., J. Appl. Phys. 76, 1656 (1994).CrossRefGoogle Scholar
19.Komvopoulos, K., Brown, I. G., Wei, B., Anders, S., Anders, A., and Bhatia, C. S., U.S. Patent 5,476,691 (1995).Google Scholar
20.Brown, I. G., Galvin, J.E., and MacGill, R. A., Appl. Phys. Lett. 47, 358 (1985).CrossRefGoogle Scholar
21.Brown, I. G., Galvin, J. E., Gavin, B. F., and MacGill, R. A., Rev. Sci. Instrum. 57, 1069 (1986).CrossRefGoogle Scholar
22.Ziegler, J. F., Biersack, J.P., and Littmark, U., in The Stopping and Range of Ions in Solids, edited by Ziegler, J. F. (Pergamon, New York, 1985), Vol. 1, Chap. 8, p. 202.Google Scholar
23.Biersack, J. P., Berg, S., and Nender, C., Nucl. Instrum. Meth. Phys. Res. B 59/60, 21 (1991).CrossRefGoogle Scholar
24.Lu, C. J., Bogy, D., and Kaneko, R., J. Tribol. 116, 175 (1994).CrossRefGoogle Scholar
25.Wei, B. and Komvopoulos, K., J. Tribol. 119, 823 (1997).CrossRefGoogle Scholar
26.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Struct. 24, 1287 (1988).Google Scholar
27.Komvopoulos, K., J. Tribol. 111, 430 (1989).Google Scholar
28.Tang, X-M., Weber, J., Baer, Y., Müller, C., Hänni, W., and Hintermann, H. E., Phys. Rev. B 48, 10124 (1993).CrossRefGoogle Scholar
29.Dillon, R. O., Woollam, J.A., and Katkanant, V., Phys. Rev. B 29, 3482 (1984).Google Scholar
30.Sela, I., Adel, M., and Beserman, R., J. Appl. Phys. 68, 70 (1990).CrossRefGoogle Scholar
31.Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).Google Scholar
32.Wang, Y., Alsmeyer, D. C., and McCreery, R.L., Chem. Mater. 2, 557 (1990).Google Scholar
33.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
34.Ullmann, J., Martin, H., and Wolf, G. K., Surf. Coat. Technol. 59, 255 (1993).CrossRefGoogle Scholar
35.Weissmantel, C., Bewilogua, K., Breuer, K., Dietrich, D., Ebersbach, U., Erler, H-J., Rau, B., and Reisse, G., Thin Solid Films 96, 31 (1982).Google Scholar
36.Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 68, 1018 (1990).CrossRefGoogle Scholar
37.Zou, J. W., Schmidt, K., Reichelt, K., and Dischler, B., J. Appl. Phys. 67, 487 (1990).CrossRefGoogle Scholar
38.Ager, J. W. III, Anders, S., Anders, A., Wei, B., Yao, X. Y., Brown, I. G., Bhatia, C. S., and Komvopoulos, K., Diamond Relat. Mater. 8, 451 (1999).Google Scholar