Skip to main content Accessibility help

The microstructure evolution and element segregation of Inconel 617 alloy tungsten inert gas welded joint

  • Wen Liu (a1), Fenggui Lu (a1), Xinhua Tang (a1), Renjie Yang (a2) and Haichao Cui (a3)...


Inconel 617 alloy (IN 617) is an important candidate material of advanced ultrasupercritical power unit above 700 °C. However, there are some issues in welding of IN 617 such as constitutional liquation and hot cracking. Tungsten inert gas (TIG) is considered as an effective welding method to join IN 617 because of low heat input and high quality. Investigation of the microstructure variation of TIG welded joint and its correlation with properties is helpful in deep understanding the stability and reliability of IN 617 welded joint. In this paper, the microstructure evolution and element segregation of IN 617 welded joint were investigated systematically. It is found that the base metal (BM) with significant banded structure is characterized by austenitic grains and some secondary phases distribute along the grain boundaries and inside the grains. The fine secondary phases are determined as M23C6 enriched with Cr and Mo elements. A few large polygon phases are identified as Ti(C, N) with a size of about 10 μm. The coarsened secondary phases are observed in the heat affected zone (HAZ) close to BM whilst the lamellar structure enriched with Cr and Mo is present along grain boundaries in the HAZ near the fusion line. The weld metal (WM) is fully austenitic with a dendritic structure and contains particles dispersing in the matrix. The element segregation on grain boundaries of IN 617 welded joint was analyzed by energy dispersive spectrometer. No obvious element segregation was observed in HAZ. In WM, the area in the vicinity of solidification grain boundaries and solidification subgrain boundaries (SSGBs) has a local depletion of Ni and Co while the Cr and Mo have no obvious segregation. Microhardness and high temperature tensile test of BM and WM were conducted. The WM has a little bit larger hardness value than BM and HAZ because of the strengthening effect of SSGBs. The fracture position is determined in the middle of WM, which is attributed to the grain boundary failure in the center of WM. The high temperature tensile properties of the welded joint are close to BM. In this investigation, the constitutional liquation in HAZ and solidification in WM have little effect on the high temperature tensile properties. TIG welding method is proved to be a suitable welding method to join IN 617.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Ma, X., Li, Y., and Yang, Y.: Grain refinement effect of pulsed magnetic field on solidified microstructure of superalloy IN718. J. Mater. Res. 24(10), 3174 (2009).
2. Rösler, J., Götting, M., Del Genovese, D., Böttger, B., Kopp, R., Wolske, M., Schubert, F., Penkalla, H.J., Seliga, T.S., and Thoma, A.: Wrought Ni-base superalloys for steam turbine applications beyond 700° C. Adv. Eng. Mater. 5(7), 469 (2003).
3. Tang, Y., Wang, Q., Yuan, F., Gong, J., and Sun, C.: High-temperature oxidation behavior of arc ion plated NiCoCrAlYSiB coatings on cobalt-based superalloy. J. Mater. Res. 21(03), 737 (2006).
4. Viswanathan, R., Henry, J., Tanzosh, J., Stanko, G., Shingledecker, J., Vitalis, B., and Purgert, R.: US program on materials technology for ultra-supercritical coal power plants. J. Mater. Eng. Perform. 14(3), 281 (2005).
5. Mankins, W., Hosier, J., and Bassford, T.: Microstructure and phase stability of Inconel alloy 617. Metall.Trans. 5(12), 2579 (1974).
6. Kimball, O., Lai, G., and Reynolds, G.: Effects of thermal aging on the microstructure and mechanical properties of a commercial Ni-Cr-Co-Mo alloy (Inconel 617). Metall. Mater. Trans. A 7(12), 1951 (1976).
7. He, L., Zheng, Q., Sun, X., Hou, G., Guan, H., and Hu, Z.: M23C6 precipitation behavior in a Ni-base superalloy M963. J. Mater. Sci. 40(11), 2959 (2005).
8. Shankar, V., Rao, K.B.S., and Mannan, S.: Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 288(2), 222 (2001).
9. Hillert, M. and Lagneborg, R.: Discontinuous precipitation of M23C6 in austenitic steels. J. Mater. Sci. 6(3), 208 (1971).
10. Osoba, L., Ding, R., and Ojo, O.: Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy. Mater. Charact. 65, 93 (2012).
11. Henderson, M., Arrell, D., Larsson, R., Heobel, M., and Marchant, G.: Nickel based superalloy welding practices for industrial gas turbine applications. Sci. Technol. Weld. Joining 9(1), 13 (2004).
12. Ojo, O., Richards, N., and Chaturvedi, M.: Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded Inconel 738LC superalloy. Metall. Mater. Trans. A 37(2), 421 (2006).
13. González, M., Martinez, D., Pérez, A., Guajardo, H., and Garza, A.: Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy. Mater. Charact. 62(12), 1116 (2011).
14. Jalilian, F., Jahazi, M., and Drew, R.: Microstructure evolution during transient liquid phase bonding of alloy 617. Metallogr., Microstruct., Anal. 2(3), 170 (2013).
15. Hosseini, H.S., Shamanian, M., and Kermanpur, A.: Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater. Charact. 62(4), 425 (2011).
16. Lin, B., Jin, Y., Hefferan, C.M., Li, S.F., Lind, J., Suter, R.M., Bernacki, M., Bozzolo, N., Rollett, A.D., and Rohrer, G.S.: Observation of annealing twin nucleation at triple lines in nickel during grain growth. Acta Mater. 99, 63 (2015).
17. Wang, W., Lartigue-Korinek, S., Brisset, F., Helbert, A., Bourgon, J., and Baudin, T.: Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys. J. Mater. Sci. 50(5), 2167 (2015).
18. Liu, W., Lu, F., Yang, R., Tang, X., and Cui, H.: Gleeble simulation of the HAZ in Inconel 617 welding. J.Mater. Process. Technol. 225, 221 (2015).
19. Oh, J-H., Yoo, B-G., Choi, I-C., Santella, M.L. and Jang, J-i.: Influence of thermo-mechanical treatment on the precipitation strengthening behavior of Inconel 740, a Ni-based superalloy. J.Mater. Res. 26(10), 1253 (2011).
20. Jiang, C. and Liu, Z-K.: Computational investigation of constitutional liquation in Al–Cu alloys. Acta Mater. 51(15), 4447 (2003).
21. Kuźnicka, B.: Influence of constitutional liquation on corrosion behaviour of aluminium alloy 2017A. Mater. Charact. 60(9), 1008 (2009).
22. Ye, X., Hua, X., Wu, Y., and Lou, S.: Precipitates in coarse-grained heat-affected zone of Ni-based 718 superalloy produced by tungsten inert gas welding. J. Mater. Process. Technol. 217, 13 (2015).
23. Lipnitskii, A., Nelasov, I., Golosov, E., Kolobov, Y.R., and Maradudin, D.: A molecular-dynamics simulation of grain-boundary diffusion of niobium and experimental investigation of its recrystallization in a niobium-copper system. Russ. Phys. J. 56(3), 330 (2013).
24. Bermingham, M.J., McDonald, S.D., StJohn, D.H., and Dargusch, M.S.: The effect of boron on the refinement of microstructure in cast cobalt alloys. J. Mater. Res. 26(07), 951 (2011).
25. Takaki, S., Kawasaki, K., and Kimura, Y.: Mechanical properties of ultra fine grained steels. J. Mater. Process. Technol. 117(3), 359 (2001).


The microstructure evolution and element segregation of Inconel 617 alloy tungsten inert gas welded joint

  • Wen Liu (a1), Fenggui Lu (a1), Xinhua Tang (a1), Renjie Yang (a2) and Haichao Cui (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed