Skip to main content Accessibility help

Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification

  • Caiju Li (a1), Wenfei Lu (a1), Jun Tan (a1), Jingmei Tao (a1), Jianhong Yi (a1), Qixuan Zhang (a1) and Yang Xi (a1)...


Zr–Co–Al alloys possess prospects of wide applications in the field of nuclear reactor cladding materials and biomedical materials. (Zr0.5Co0.5)100−x Al x (x = 1, 2, 3 at.%) alloys were prepared by the water-cooling copper mold suction casting technique, and the microstructure and compression mechanical properties of the alloys were investigated. The results showed that the as-cast Zr–Co–Al alloys mainly consisted of the B2 ZrCo phase with columnar or equiaxed grains and a small quantity of intermetallic compounds, i.e., Co2Zr and Zr2Co. The yield strength of Zr–Co–Al alloys increased with increasing Al content, but the plasticity decreased at the same time. The as-cast Zr49.5Co49.5Al1 alloy attained the highest ultimate compression strength up to 2.57 ± 0.02 GPa and the largest compression strain up to ∼54.7%. The B2 to B33 martensitic transformation that occurred during the deformation process was investigated using high resolution transmission electron microscopy. It was concluded that the enhanced plasticity of Zr49.5Co49.5Al1 alloy can be attributed to the transformation induced plasticity associated with the deformation-induced martensitic transformation.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Jörg F. Löffler



Hide All
1. Matsuda, M., Hayashi, K., and Nishida, M.: Ductility enhancement in B2-type Zr–Co–Ni alloys with martensitic transformation. Mater. Trans. 50, 2335 (2009).
2. Yamaguchi, T., Kaneno, Y., and Takasugi, T.: Room-temperature tensile property and fracture behavior of recrystallized B2-type CoZr intermetallic compound. Scr. Mater. 52, 39 (2005).
3. Li, C.J., Tan, J., Wang, G., Bednarčík, J., Zhu, X.K., Zhang, Y., Stoica, M., Kühn, U., and Eckert, J.: Enhanced strength and transformation-induced plasticity in rapidly solidified Zr–Co–(Al) alloys. Scr. Mater. 68, 897 (2013).
4. Kaneno, Y., Asao, K., Yoshida, M., Tsuda, H., and Takasugi, T.: Tensile properties of recrystallized B2 CoZr intermetallic alloys. J. Alloys Compd. 456, 125 (2008).
5. Matsuda, M., Nishimoto, T., Matsunaga, K., Morizono, Y., Tsurekawa, S., and Nishida, M.: Deformation structure in ductile B2-type Zr–Co–Ni alloys with martensitic transformation. J. Mater. Sci. 46, 4221 (2011).
6. Tan, J., Pan, F.S., Zhang, Y., Wang, Z., Stoica, M., Sun, B.A., Kühn, U., and Eckert, J.: Effect of Fe addition on glass forming ability and mechanical properties in Zr–Co–Al–(Fe) bulk metallic glasses. Mater. Sci. Eng., A 539, 124 (2012).
7. Matsuda, M., Iwamoto, Y., Morizono, Y., Tsurekawa, S., Takashima, K., and Nishida, M.: Enhancement of ductility in B2-type Zr–Co–Ni alloys with deformation-induced martensite and microcrack formation. Intermetallics 36, 45 (2013).
8. Matsuda, M., Nishimoto, T., Morizono, Y., Tsurekawa, S., and Nishida, M.: Enhancement of ductility in B2-type Zr–Co–Pd alloys with martensitic transformation. Intermetallics 19, 894 (2011).
9. Tan, J., Pan, F.S., Zhang, Y., Sun, B.A., He, J., Zheng, N., Stoica, M., Kühn, U., and Eckert, J.: Formation of Zr–Co–Al bulk metallic glasses with high strength and large plasticity. Intermetallics 31, 282 (2012).
10. Javid, F.A., Mattern, N., Pauly, S., and Eckert, J.: Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys. J. Alloys Compd. 509, S334 (2011).
11. Li, C.J., Tan, J., Zhu, X.K., Zhang, Y., Stoica, M., Kühn, U., and Eckert, J.: On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy. Intermetallics 35, 116 (2013).
12. Song, K.K., Pauly, S., Zhang, Y., Scudino, S., Gargarella, P., Surreddi, K.B., Kühn, U., and Eckert, J.: Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass. Intermetallics 19, 1394 (2011).
13. Tan, J., Zhang, Y., Stoica, M., Kühn, U., Mattern, N., Pan, F.S., and Eckert, J.: Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass. Intermetallics 19, 567 (2011).
14. Inoue, A., Zhang, T., and Masumoto, T.: Preparation of bulky amorphous Zr–Al–Co–Ni–Cu alloys by copper mold casting and their thermal and mechanical properties. Mater. Trans. JIM 36, 391 (1995).
15. Kurz, W. and Fisher, D.J.: Fundamentals of Solidification (Trans Tech Pub. Ltd, Zurich, 1989).
16. Wang, G., Mattern, N., Bednarčík, J., Li, R., Zhang, B., and Eckert, J.: Correlation between elastic structural behavior and yield strength of metallic glasses. Acta Mater. 60, 3074 (2012).
17. Qian, Y., Zhi-Wei, S., Ju, L., Xiaoxu, H., Lin, X., Jun, S., and Evan, M.: Strong crystal size effect on deformation twinning at meso-scale. Nature 463, 335 (2010).
18. Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
19. Zhang, T., Yamamoto, T., and Inoue, A.: Formation, thermal stability and mechanical properties in Zr–Al–Co bulk glassy alloys. Mater. Trans. 43, 2843 (2002).
20. Wang, Y., Zhang, X., Qiang, J., Wang, Q., Wang, D., Li, D., Shek, C.H., and Dong, C.: Composition optimization of the Al–Co–Zr bulk metallic glasses. Scr. Mater. 50, 829 (2004).
21. Qin, X.M., Tan, J., Li, C.J., Wang, X.C., Jiang, Y.H., and Zhou, R.: On the formation, mechanical properties and crystallization behaviors of a Zr56Co24Al20 bulk metallic glass. J. Alloys Compd. 647, 204 (2015).
22. Li, G., Zhou, H., and Gao, T.: Structural, vibrational and thermodynamic properties of zirconium–cobalt: First-principles study. J. Nucl. Mater. 424, 220 (2012).
23. Liu, C.T. and Lu, Z.P.: Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics 13, 415 (2005).
24. Zhang, X.F., Wang, Y.M., Qiang, J.B., Wang, Q., Wang, D.H., Li, D.J., Shek, C.H., and Dong, C.: Optimum Zr–Al–Co bulk metallic glass composition Zr53Al23.5Co23.5 . Intermetallics 12, 1275 (2004).
25. Wei, X.F., Sun, Y.F., Guan, S.K., Terada, D., and Shek, C.H.: Compressive and tensile properties of CuZrAl alloy plates containing martensitic phases. Mater. Sci. Eng., A 517, 375 (2009).
26. Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G., and Antretter, T.: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723 (2000).
27. Iwahashi, Y., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G.: Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater. Trans. A 29, 2245 (1998).
28. Schneibel, J.H., Specht, E.D., and Simpson, W.A.: Solid solution strengthening in ternary B2 iron aluminides containing 3d transition elements. Intermetallics 4, 581 (1996).
29. Bendersky, L.A., Stalick, J.K., Portier, R., and Waterstrat, R.M.: Crystallographic structures and phase transformations in ZrPd. J. Alloys Compd. 236, 19 (1996).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed