Skip to main content Accessibility help

Microstructure and mechanical properties of sub-micron zinc structures

  • Sumin Jin (a1), Sujing Xie (a2), Michael J. Burek (a3), Zeinab Jahed (a4) and Ting Y. Tsui (a5)...


The mechanical properties of submicron scale columnar zinc structures, with average diameters between 130 and 1060 nm, were characterized by uniaxial microcompression tests. The zinc pillars were fabricated by electron beam lithography and electroplating and were found to be generally single crystalline, with a preferred out-of-plane orientation close to the [0001] directions. Post deformation microstructural analysis suggests that the zinc pillars maintain their single-crystalline structure, but without twin boundary formation. Interestingly, the engineering flow stress results indicate that small-scale zinc structures are insensitive to both strain rate and size.


Corresponding author

b)Address all correspondence to this author. e-mail:


Hide All
1.Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).
2.Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
3.Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci. 56, 654 (2011).
4.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
5.Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).
6.Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).
7.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
8.Greer, J.R. and Nix, W.D.: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A: Mater. Sci. Process. 80, 1625 (2005).
9.Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmuller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).
10.Jennings, A.T., Burek, M.J., and Greer, J.R.: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).
11.Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G.: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119 (2006).
12.Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).
13.Kim, J-Y. and Greer, J.R.: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).
14.Kim, J-Y., Jang, D., and Greer, J.R.: Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr. Mater. 61, 300 (2009).
15.Kim, J-Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).
16.Schneider, A.S., Kaufmann, D., Clark, B.G., Frick, C.P., Gruber, P.A., Mönig, R., Kraft, O., and Arzt, E.: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).
17.Han, S.M., Bozorg-Grayeli, T., Groves, J.R., and Nix, W.D.: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).
18.Burek, M.J., Budiman, A.S., Jahed, Z., Tamura, N., Kunz, M., Jin, S., Han, S.M.J., Lee, G., Zamecnik, C., and Tsui, T.Y.: Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng., A 528, 5822 (2011).
19.Burek, M.J., Jin, S., Leung, M.C., Jahed, Z., Wu, J., Budiman, A.S., Tamura, N., Kunz, M., and Tsui, T.Y.: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Mater. 59, 4709 (2011).
20.Lilleodden, E.: Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 62, 532 (2010).
21.Byer, C.M., Li, B., Cao, B., and Ramesh, K.T.: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).
22.Kim, G.S., Yi, S., Huang, Y., and Lilleodden, E.: Twining and slip activity in magnesium <11-20> single crystal, in Mechanical Behavior at Small Scales—Experiments and Modeling, edited by Lou, J., Lilleodden, E., Boyce, B., Lu, L., Derlet, P.M., Weygand, D., Li, J., Uchic, M.D., and Le Bourhis, E. (Mater. Res. Soc. Symp. Proc. Vol. 1224, Warrendale, PA, 2010), 1224-FF05-03.
23.Yu, Q., Shan, Z-W., Li, J., Huang, X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).
24.Sun, Q., Guo, Q., Yao, X., Xiao, L., Greer, J.R., and Sun, J.: Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation. Scr. Mater. 65, 473 (2011).
25.Ye, J., Mishra, R.K., Sachdev, A.K., and Minor, A.M.: In situ TEM compression testing of Mg and Mg-0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).
26.Jin, S., Burek, M.J., Evans, N.D., Jahed, Z., and Tsui, T.Y.: Fabrication and plastic deformation of sub-micron cadmium structures. Scr. Mater. 66(9), 619–622 (2012).
27.Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter 73, 245410 (2006).
28.Bei, H., Shim, S., Pharr, G.M., and George, E.P.: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).
29.Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).
30.Bei, H., Shim, S., Miller, M.K., Pharr, G.M., and George, E.P.: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).
31.Zimmermann, J., Van Petegem, S., Bei, H., Grolimund, D., George, E.P., and Van Swygenhoven, H.: Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis. Scr. Mater. 62, 746 (2010).
32.Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction. 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).
33.Burek, M.J. and Greer, J.R.: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2010).
34.Adams, K.H., Vreeland, T. Jr., and Wood, D.S.: Basal dislocation mobility in zinc single crystals. Mater. Sci. Eng. 2, 37 (1967).
35.Adams, K.H., Blish, R.C., and Vreeland, T. Jr.: Second-order pyramidal slip in zinc single crystals. Mater. Sci. Eng. 2, 201 (1967).
36.Rosenbaum, H.S.: Non-basal slip and twin accommodation in zinc crystals. Acta Metall. 9, 742 (1961).
37.Godavarti, P.S. and Murty, K.L.: Creep anisotropy of zinc using impression tests. J. Mater. Sci. Lett. 6, 456 (1987).
38.Greer, J., Kim, J-Y., and Burek, M.J.: The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM 61, 19 (2009).
39.Lee, G., Kim, J-Y., Budiman, A.S., Tamura, N., Kunz, M., Chen, K., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 1361 (2010).
40.Lee, G., Kim, J-Y., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Plastic deformation of indium nanostructures. Mater. Sci. Eng., A 528, 6112 (2011).
41.Jahed, Z., Jin, S., Burek, M.J., and Tsui, T.Y.: Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures. Mater. Sci. Eng., A 542, 40–48 (2012).
42.Wang, S.C., Zhu, Z., and Starink, M.J.: Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models. J. Microsc. 217, 174 (2005).
43.Antonopoulos, J.G., Karakostas, T., Komninou, P., and Delavignette, P.: Dislocation movements and deformation twinning in zinc. Acta Metall. 36, 2493 (1988).
44.Gilman, J.J.: Deformation of symmetric zinc bicrystals. Acta Metall. 1, 426 (1953).
45.Kawada, T.: On the plastic deformation of zinc bicrystal I. J. Phys. Soc. Jpn. 6, 362 (1951).


Related content

Powered by UNSILO

Microstructure and mechanical properties of sub-micron zinc structures

  • Sumin Jin (a1), Sujing Xie (a2), Michael J. Burek (a3), Zeinab Jahed (a4) and Ting Y. Tsui (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.