Skip to main content Accessibility help
×
Home

Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5

  • J. Das (a1), S. Pauly (a2), C. Duhamel (a2), B.C. Wei (a3) and J. Eckert (a1)...

Abstract

Cu47.5Zr47.5Al5 was prepared by arc melting and solidified in situ by suction casting into 2–5-mm-diameter rods under various cooling rates (200–2000 K/s). The microstructure was investigated along the length of the rods by electron microscopy, differential scanning calorimetry and mechanical properties were investigated under compression. The microstructure of differently prepared specimens consists of macroscopic spherical shape chemically inhomogeneous regions together with a low volume fraction of randomly distributed CuZr B2 phase embedded in a 2–7 nm size clustered “glassy-martensite” matrix. The as-cast specimens show high yield strength (1721 MPa), pronounced work-hardening behavior up to 2116 MPa and large fracture strain up to 12.1–15.1%. The fracture strain decreases with increasing casting diameter. The presence of chemical inhomogenities and nanoscale “glassy-martensite” features are beneficial for improving the inherent ductility of the metallic glass.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: j.das@ifw-dresden.de

References

Hide All
1Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).
2Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys, edited by Inoue, A., Yavari, A.R., Johnson, W.L. and Dauskardt, R.H. (Mater. Res. Soc. Symp. Proc. 644, Warrendale, PA, 2001).
3Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
4Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M.: Crystallization behavior and phase formation in Zr–Al–Cu–Ni metallic glass containing oxygen. Mater. Trans. 39, 623 (1998).
5Gebert, A., Eckert, J., and Schultz, L.: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).
6Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L.: Quasi-static constitutive behavior of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).
7Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).
8Eckert, J., Kübler, A., and Schultz, L.: Mechanically alloyed Zr55Al10Cu30Ni5 metallic glass composites containing nanocrystalline W particles. J. Appl. Phys. 85, 7112 (1999).
9Choi-Yim, H., Schroers, J., and Johnson, W.L.: Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Appl. Phys. Lett. 80, 1906 (2002).
10Conner, R.D., Choi-Yim, H., and Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 (1999).
11Dandliker, R.B., Conner, R.D., and Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 2896 (1998).
12Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).
13Hirano, T., Kato, H., Matsuo, A., Kawamura, Y., and Inoue, A.: Synthesis and mechanical properties of Zr55Al10Ni5Cu30 bulk glass composites containing ZrC particles formed by the in-situ reaction. Mater. Trans., JIM 41, 1454 (2000).
14Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).
15Kühn, U., Eckert, J., Mattern, N., and Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 (2002).
16Eckert, J., Kühn, U., Mattern, N., He, G., and Gebert, A.: Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics 10, 1183 (2002).
17Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).
18Xing, L.Q., Eckert, J., Löser, W., and Schultz, L.: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999).
19Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., and Sakurai, T.: Structural bulk metallic glasses with different length-scale of constituent phases. Mater. Trans., JIM 40, 1137 (1999).
20Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).
21Fan, C., Takeuchi, A., and Inoue, A.: Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases. Mater. Trans., JIM 40, 41 (1999).
22Pekarskaya, E., Kim, C.P., and Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001).
23He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).
24He, G., Eckert, J., and Löser, W.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003).
25He, G., Eckert, J., Löser, W., and Hagiwara, M.: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004).
26Louzguine, D.V., Kato, H., and Inoue, A.: High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).
27Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr–Nb–(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003).
28Das, J., Güth, A., Klauss, H-J., Mickel, C., Löser, W., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scripta Mater. 49, 1189 (2003).
29Löser, W., Das, J., Güth, A., Klauß, H-J., Mickel, C., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics 12, 1153 (2004).
30Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).
31Wang, Y.M., Chen, M.W., Zhou, F.H., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).
32Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).
33Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., and Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Metals Mater. Int. 10, 575 (2004).
34Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
35Saida, J., Setyawan, A.D.H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).
36Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., and Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 (2006).
37Venkataraman, S., Stoica, M., Scudino, S., Gemming, T., Mickel, C., Kunz, U., Kim, K.B., Schultz, L., and Eckert, J.: Revisiting the Cu47Ti33Zr11Ni8Si1 glass-forming alloy. Scripta Mater. 54, 835 (2006).
38Koval, Y.N., Firstov, G.S., and Kotko, A.V.: Martensitic-transformation and shape memory effect in ZrCu intermetallic compound. Scripta Metall. Mater. 27, 1611 (1992).
39Liu, Z.Y., Aindow, M., Hriljac, J.A., Jones, I.P., and Harris, I.R.: Phase transformations in equiatomic ZrCu alloy. Journal of Metastable and Nanocrystalline Materials 360–362, 223 (2001).
40Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Cheung, T.L., and Shek, C.H.: Plasticity-improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).
41Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., and Hono, K.: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).
42Srivastava, R.M., Eckert, J., Löser, W., Dhindaw, B.K., and Schultz, L.: Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans., JIM 43, 1670 (2002).
43Lee, M.C. and Johnson, W.L.: Two-dimensional phase separation on the spherical surface of the metallics-glass Au55Pb22.5Sb22.5. Appl. Phys. Lett. 41, 1054 (1982).
44Yu, P., Bai, H.Y., Tang, M.B., and Wang, W.L.: Excellent glass-forming ability in simple Cu50Zr50-based alloys. J. Non-Cryst. Solids 351, 1328 (2005).
45Sarkar, S., Ren, X.B., and Otsuka, K.: Evidence for strain glass in the ferroelastic-martensitic system Ti50−xNi50+x. Phys. Rev. Lett. 95, 205702 (2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed