Skip to main content Accessibility help
×
Home

Microstructure and mechanical properties of electrodeposited Al1−x Mn x /Al1−y Mn y nanostructured multilayers

  • Wenjun Cai (a1) and Christopher A. Schuh (a2)

Abstract

Nanostructured Al1−x Mn x /Al1−y Mn y multilayers were deposited from room temperature ionic liquid using galvanostatic control at various current densities and electrolyte compositions. By tuning the deposition parameters, multilayers with both micrometer and nanometer layer thicknesses were synthesized, with modulation of the elastic modulus and hardness between Mn-lean and Mn-rich layers. Surface morphology, composition, and microstructure of the films were characterized using x-ray diffraction and electron microanalysis tools. Nanoindentation and nanoscratch tests were performed to evaluate the mechanical and tribological properties of selected multilayers. Finally, the effects of deposition parameters on the microstructure evolution and mechanical properties of the multilayers were discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microstructure and mechanical properties of electrodeposited Al1−x Mn x /Al1−y Mn y nanostructured multilayers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microstructure and mechanical properties of electrodeposited Al1−x Mn x /Al1−y Mn y nanostructured multilayers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microstructure and mechanical properties of electrodeposited Al1−x Mn x /Al1−y Mn y nanostructured multilayers
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: caiw@usf.edu

References

Hide All
1. Aydiner, C.C., Brown, D.W., Mara, N.A., Almer, J., and Misra, A.: In situ x-ray investigation of freestanding nanoscale Cu-Nb multilayers under tensile load. Appl. Phys. Lett. 94(3), 031906 (2009).
2. Barnett, S.A. and Shinn, M.: Plastic and elastic properties of compositionally modulated thin-films. Annu. Rev. Mater. Sci. 24, 481511 (1994).
3. Bhattacharyya, D., Mara, N.A., Dickerson, P., Hoagland, R.G., and Misra, A.: Compressive flow behavior of Al-TiN multilayers at nanometer scale layer thickness. Acta Mater. 59(10), 38043816 (2011).
4. Choi, I.S., Detor, A.J., Schwaiger, R., Dao, M., Schuh, C.A., and Suresh, S.: Mechanics of indentation of plastically graded materials - II: Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids 56(1), 172183 (2008).
5. Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97(2), 021909 (2010).
6. Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 48174824 (2005).
7. Ross, C.A.: Electrodeposited multilayer thin-films. Annu. Rev. Mater. Sci. 24, 159188 (1994).
8. Goldman, L.M., Ross, C.A., Ohashi, W., Wu, D., and Spaepen, F.: New Dual-Bath technique for electrodeposition of short repeat length multilayers. Appl. Phys. Lett. 55(21), 21822184 (1989).
9. Stafford, G.R.: The electrodeposition of an aluminum-manganese metallic-glass from molten-salts. J. Electrochem. Soc. 136(3), 635639 (1989).
10. Ali, M.R., Nishikata, A., and Tsuru, T.: Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt. J. Electroanal. Chem. 513(2), 111118 (2001).
11. Simka, W., Puszczyk, D., and Nawrat, G.: Electrodeposition of metals from non-aqueous solutions. Electrochim. Acta 54(23), 53075319 (2009).
12. Jiang, T., Brym, M.J.C., Dube, G., Lasia, A., and Brisard, G.M.: Electrodeposition of aluminium from ionic liquids: Part I - Electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-l-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 201(1–2), 19 (2006).
13. Stafford, G.R. and Hussey, C.L.: Electrodeposition of transition metal-aluminum alloys from chloroaluminate molten salts. In Advances in Electrochemical Science and Engineering, Wiley-VCH Verlag GmbH: Weinheim, 2001; pp. 313328.
14. Plieth, W.: Electrochemical alloy deposition: New properties by formation of intermetallic compounds. Surf. Coat. Technol. 169, 9699 (2003).
15. Endres, F.: Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. Chemphyschem 3(2), 144154 (2002).
16. Cai, W.J. and Schuh, C.A.: Tuning nanoscale grain size distribution in multilayered Al-Mn alloys. Scr. Mater. 66(3–4), 194197 (2012).
17. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 15641583 (1992).
18. Verdieck, R.G. and Yntema, L.F.: The electrochemistry of baths of fused aluminum halides I. Aluminum as a reference electrode. J. Phys. Chem. 46(3), 344352 (1942).
19. Tremillo, B. and Letisse, G.: Properties of molten sodium tetrachloroaluminate in solution. I. Acid-Base systems. J. Electroanal. Chem. 17(3–4), 371 (1968).
20. Ruan, S.Y. and Schuh, C.A.: Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57(13), 38103822 (2009).
21. Uchida, J., Tsuda, T., Yamamoto, Y., Seto, H., Abe, M., and Shibuya, A.: Electroplating of amorphous aluminum manganese alloy from molten-salts. ISIJ Int. 33(9), 10291036 (1993).
22. Boon, J.A., Levisky, J.A., Pflug, J.L., and Wilkes, J.S.: Friedel crafts reactions in ambient-temperature molten-salts. J. Org. Chem. 51(4), 480483 (1986).
23. Li, Q.F., Hjuler, H.A., Berg, R.W., and Bjerrum, N.J.: Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts - Influence of MnCl2 and sulfide addition. J. Electrochem. Soc. 137(9), 27942798 (1990).
24. Li, J.C., Nan, S.H., and Jiang, Q.: Study of the electrodeposition of Al-Mn amorphous alloys from molten salts. Surf. Coat. Technol. 106(2–3), 135139 (1998).
25. Grushko, B. and Stafford, G.R.: Phase formation in electrodeposited and thermally annealed Al-Mn alloys. Metall. Trans. A 21(11), 28692879 (1990).
26. Tsuda, T., Hussey, C.L., and Stafford, G.R.: Electrodeposition of Al-Mo-Mn ternary alloys from the Lewis acidic AlCl3-EtMeImCl molten salt. J. Electrochem. Soc. 152(9), C620C625 (2005).
27. Grushko, B. and Stafford, G.R.: Structural study of electrodeposited aluminum-manganese alloys. Metall. Trans. A 20(8), 13511359 (1989).
28. Li, Q.F., Hjuler, H.A., Berg, R.W., and Bjerrum, N.J.: Influence of substrates on the electrochemical deposition and dissolution of aluminum in NaAlCl4 melts. J. Electrochem. Soc. 138(3), 763766 (1991).
29. Ruan, S. and Schuh, C.A.: Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr. Mater. 59(11), 12181221 (2008).
30. Carlson, W.D.: Competitive diffusion-controlled growth of porphyroblasts. Mineral. Mag. 55(380), 317330 (1991).
31. Scharifker, B. and Hills, G.: Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879889 (1983).
32. Dent, A.J., Seddon, K.R., and Welton, T.: The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate(III) ionic liquids, as determined by Exafs. J. Chem. Soc., Chem. Commun. (4), 315316 (1990).
33. Kato, M., Mori, T., and Schwartz, L.H.: Hardening by spinodal modulated structure. Acta Metall. 28(3), 285290 (1980).
34. Findik, F. and Flower, H.M.: Morphological-changes and hardness evolution in Cu-30Ni-5Cr and Cu-45Ni-15Cr spinodal alloys. Mater. Sci. Technol. 9(5), 408416 (1993).

Keywords

Related content

Powered by UNSILO

Microstructure and mechanical properties of electrodeposited Al1−x Mn x /Al1−y Mn y nanostructured multilayers

  • Wenjun Cai (a1) and Christopher A. Schuh (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.