Skip to main content Accessibility help
×
Home

Microstructure and compressive properties of chill-cast Mg–Al–Ca alloys

  • Ling-Ling Shi (a1), Han Ma (a1), Teng Liu (a1), Jian Xu (a1) and En Ma (a2)...

Abstract

Mg82Al8Ca10 was determined to be a pseudo-binary eutectic composition [liquid solidifying into α–Mg and (Mg,Al)2Ca in the Mg–Al–Ca ternary system with a eutectic melting temperature of 789 K]. A series of Mgx(Al0.44Ca0.56)100−x alloys, where 75 ≤ x ≤ 95, were cast into Φ4 mm rods using copper mold casting. The eutectic alloy exhibits the highest fracture strength, σf = 609 MPa. For 75 ≤ x ≥ 79, the alloys have hypereutectic microstructures with Mg2Ca as the primary phase, and σf is reduced together with diminishing plasticity. For hypoeutectic alloys with 86 ≤ x ≥ 95, the volume fraction of the primary α–Mg dendrites dispersed in the eutectic matrix increases with increasing x, resulting in a gradual decrease of the yield and fracture strengths but improved plastic strain to as large as 9%. The refined microstructures created in bulk samples via chill casting can lead to a good combination of strength and plasticity, with specific strength superior to commercial Mg alloys.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: ema@jhu.edu

References

Hide All
1.Kainer, K.U., Von Buch, F. The current state of technology and potential for further development of magnesium applications, in Magnesium Alloys and Technology, edited by Kainer, K.U., translated by F. Kaiser (Wiley-VCH Verlag, Weinheim, Germany, 2003).
2.Kato, A., Horikiri, H., Inoue, A., Masumoto, T.: Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders. Mater. Sci. Eng. A179/180, 707 (1994).
3.Shaw, C., Jones, H.: Structure and mechanical properties of two Mg–Al–Ca alloys consolidated from atomized powder. Mater. Sci. Technol. 15, 78 (1999).
4.Inoue, A., Kato, A., Zhang, T., Kim, S.G., Masumoto, T.: Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans. JIM 32, 609 (1991).
5.Kang, H.G., Park, E.S., Kim, W.T., Kim, D.H., Cho, H.K.: Fabrication of bulk Mg–Cu–Ag–Y glassy alloy by squeeze casting. Mater. Trans. JIM 41, 846 (2000).
6.Amiya, K., Inoue, A.: Thermal stability and mechanical properties of Mg–Y–Cu–M (M = Ag, Pd) bulk amorphous alloys. Mater. Trans. JIM 41, 1460 (2000).
7.Men, H., Hu, Z.Q., Xu, J.: Bulk metallic glass formation in the Mg–Cu–Zn–Y system. Scripta Mater. 46, 699 (2002).
8.Ma, H., Ma, E., Xu, J.: A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J. Mater. Res. 18, 2288 (2003).
9.Men, H., Kim, D.H.: Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 (2003).
10.Men, H., Kim, W.T., Kim, D.H.: Fabrication and mechanical properties of Mg65Cu15Ag5Pd5Gd10 bulk metallic glass. Mater. Trans. 44, 2141 (2003).
11.Yuan, G.Y., Zhang, T., Inoue, A.: Thermal stability, glass-forming ability and mechanical properties of Mg–Y–Zn–Cu glassy alloys. Mater. Trans. 44, 2271 (2003).
12.Ma, H., Zheng, Q., Xu, J., Li, Y., Ma, E.: Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252 (2005).
13.Park, E.S., Kim, D.H.: Formation of Mg–Cu–Ni–Ag–Zn–Y–Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 20, 1465 (2005).
14.Bruck, H.A., Christman, T., Rosakis, A.J., Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).
15.Inoue, A., Shen, B.L., Koshiba, H., Kato, H., Yavari, A.R.: Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2, 661 (2003).
16.Szuecs, F., Kim, C.P., Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).
17.Lee, M.L., Li, Y., Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).
18.Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).
19.Xu, Y.K., Xu, J.: Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites. Scripta Mater. 49, 843 (2003).
20.Xu, Y.K., Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).
21.He, G., Eckert, J., Löser, W., Schultz, L.: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).
22.He, G., Löser, W., Eckert, J.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003).
23.Dai, Q.L., Sun, B.B., Sui, M.L., He, G., Li, Y., Eckert, J., Luo, W.K., Ma, E.: High-performance bulk Ti–Cu–Ni–Sn–Ta nanocomposites based on a dendrite-eutectic microstructure. J. Mater. Res. 19, 2557 (2004).
24.Luo, A.A., Balogh, M.P., Powell, B.R.: Creep and microstructure of magnesium–aluminum–calcium based alloys. Metall. Mater. Trans. A33, 567 (2002).
25.Ninomiya, R., Ojiro, T., Kubota, K.: Improved heat resistance of Mg–Al alloys by the Ca addition. Acta Metall. Mater. 43, 669 (1995).
26.Liu, M., Wang, Q.D., Liu, Z.L., Yuan, G.Y., Wu, G.H., Zhu, Y.P., Ding, W.J.: Behavior of Mg–Al–Ca alloy during solution heat treatment at 415°C. J. Mater. Sci. Lett. 21, 1281 (2002).
27.Ozturk, K., Zhong, Y., Luo, A.A., Liu, Z.K.: Creep resistant Mg–Al–Ca alloys: Computational thermodynamics and experimental investigation. JOM 55, 40 (2003).
28.Tkachenko, V.G., Khoruzhaya, V.G., Meleshevich, K.A., Karpets, M.V., Frizel, V.V.: Phase equilibria in the Mg–Al–Ca system (region 50–100 mass% Mg). Powder Metall. Metal Ceram. 42, 268 (2003).
29.Gröbner, J., Kevorkov, D., Chumak, I., Schmid-Fetzer, R.: Experimental investigation and thermodynamic calculation of ternary Al–Ca–Mg phase equilibria. Z. Metallkd. 94, 976 (2003).
30.Suzuki, A., Saddock, N.D., Jones, J.W., Pollock, T.M.: Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater. 53, 2823 (2005).
31.Suzuki, A., Saddock, N.D., Jones, J.W., Pollock, T.M.: Structure and transition of eutectic (Mg,Al)2Ca Laves phase in a die-cast Mg–Al–Ca base alloy. Scripta Mater. 51, 1005 (2004).
32.Biloni, H., Boettinger, W.J. Solidification, in Physical Metallurgy, 4th ed. edited by Cahn, R.W. and Haasen, P.. (Elsevier Science BV, Switzerland, 1996), p. 765.

Keywords

Microstructure and compressive properties of chill-cast Mg–Al–Ca alloys

  • Ling-Ling Shi (a1), Han Ma (a1), Teng Liu (a1), Jian Xu (a1) and En Ma (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed