Skip to main content Accessibility help

Microstructural properties and formation mechanisms of GaN nanorods grown on Al2O3 (0001) substrates

  • Kyu H. Lee, Jeong Y. Lee (a1), Y.H. Kwon, Tae W. Kang (a2), Dong H. Kim, D.U. Lee and Taewhan Kim (a3)...


X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images showed that one-dimensional GaN nanorods with [0001]-oriented single-crystalline wurtzite structures were grown on Al2O3 (0001) substrates by hydride vapor-phase epitaxy without a catalyst. The tip morphology of the GaN nanorods became flat with increasing temperature difference between the gas mixing and the substrate zones. The gas mixing temperature significantly affected the formation of the nanorods, and the substrate temperature influenced the morphology and the strain of the GaN nanorods near the GaN/Al2O3 heterointerface. The strain and the stress existing in the GaN layer near the heterointerface were decreased with increasing growth rate. The formation mechanisms of the GaN nanorods grown on the Al2O3 (0001) substrates are described on the basis of the experimental results.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Yoshida, H., Yamashita, Y., Kuwabara, M., and Kan, H.: A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat. Pho-tonics 2, 551 (2008).
2Lu, C., Xie, X., Zhu, X., Wang, D., Khan, A., Diagne, I., and Mohammad, S.N.: High-temperature electrical transport in AlxGa1–xN/GaNmodulation doped field-effect transistors. J. Appl. Phys. 100, 113729 (2006).
3Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S.J., and Rinzler, A.G.: Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Lett. 4, 911 (2004).
4Schremer, A.T., Smart, J.A., Wang, Y., Ambacher, O., MacDonald, N.C., and Shealy, J.R.: High electron mobility AlGaN/ GaN heterostructure on (111) Si. Appl. Phys. Lett. 76, 736 (2000).
5Fujii, T., Gao, Y., Sharma, R., Hu, E.L., DenBaars, S.P., and Nakamura, S.: Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84, 855 (2004).
6Huang, H.H., Zeng, H.Y., Lee, C.L., Lee, S.C., and Lee, W.I.: Extended microtunnels in GaN prepared by wet chemical etch. Appl. Phys. Lett. 89, 202115 (2006).
7Dhar, S., Pérez, L., Brandt, O., Trampert, A., Ploog, K.H., Keller, J., and Beschoten, B.: Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K. Phys. Rev. B 72, 245203 (2005).
8Linthicum, K., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Batchelor, D., and Davis, R.: Pendeoepitaxy of gallium nitride thin films. Appl. Phys. Lett. 75, 196 (1999).
9Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K.: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 72, 211 (1998).
10Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).
11Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).
12Law, M., Goldberger, J., and Yang, P.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 (2004).
13Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).
14Lu, J.G., Chang, P., and Fan, Z.: Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng., R 52, 49 (2006).
15Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y., Goldberger, J., and Yang, P.: Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063 (2003).
16Chen, H.Y., Lin, H.W., Shen, C.H., and Gwo, S.: Structure and photoluminescence properties of epitaxially oriented GaN nano-rods grown on Si (111) by plasma-assisted molecular-beam epi-taxy. Appl. Phys. Lett. 89, 243105 (2006).
17Kim, H.M., Kim, D.S., Kim, D.Y., Kang, T.W., Cho, Y.H., and Chung, K.S.: Growth and characterization of single-crystal GaN nanorods by hydride vapor-phase epitaxy. Appl. Phys. Lett. 81, 2193 (2002).
18Seryogin, G., Shalish, I., Moberlychan, W., and Narayanamurti, V.: Catalytic hydride vapour phase epitaxy growth of GaN nano-wires. Nanotechnology 16, 2342 (2005).
19Lee, K.H., Kwon, Y.H., Ryu, S.Y., Kang, T.W., Jung, J.H., Lee, D.U., and Kim, T.W.: Microstructural properties and atomic arrangements of GaN nanorods grown on Si (111) substrates by using hydride vapor-phase epitaxy. J. Cryst. Growth 310, 2977 (2008).
20Aujol, E., Napierala, J., Trassoudaine, A., Gil-Lafon, E., and Cadoret, R.: Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen. J. Cryst. Growth 222, 538 (2001).
21Lee, K.H., Lee, J.Y., Jeon, H.C., Kang, T.W., Kwon, H.Y., and Kim, T.W.: Initial formation mechanisms of (Ga1–xMnx)N nano-rods grown on Al2O3 (0001) substrates. J. Mater. Res. 23, 3275 (2008).
22Harutyunyan, V.S., Aivazyan, A.P., Weber, E.R., Kim, Y., Park, Y., and Subramanya, S.G.: High-resolution x-ray diffraction strain–stress analysis of GaN/sapphire heterostructures. J. Phys. D: Appl. Phys. 34, A35 (2001).
23Debnath, R.K., Meijers, R., Richter, T., Stoica, T., Calarco, R., and Lüth, H.: Mechanism of molecular-beam-epitaxy growth of GaN nanowires on Si (111). Appl. Phys. Lett. 90, 123117 (2007).
24Hashiguchi, G., Goda, T., Hosogi, M., Hirano, K., Kaji, N., Baba, Y., Kakushima, K., and Fujita, H.: DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal. Chem. 75, 4347 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed