Skip to main content Accessibility help
×
Home

Microstructural development of Si3N4–SiC–Y2O3 ceramics derived from polymeric precursors

  • Yuji Iwamoto (a1), Ko-ichi Kikuta (a2) and Shin-ichi Hirano (a3)

Extract

[Si–Y–O–C–N] amorphous powders were synthesized by the pyrolysis at 1000 °C in N2 of chemically modified perhydropolysilazane using n-decyl alcohol and yttrium tri-methoxide. [Si–Y–O–C–N] amorphous powders yielded a unique fibrous microstructure by heat treatment in N2 at 1800 °C. The fibrous microstructure was composed of β–Si3N4 whiskers of submicron in diameter and more than 10 μm in length. Fully dense Si3N4 –SiC–Y2O3 ceramics were also fabricated by heat treatment at 1800 °C followed by powder-vehicle hot pressing at 1700 °C. After these two-step processings, [Si–Y–O–C–N] amorphous powders yielded a unique fine-grained microstructure composed of submicron grains with high aspect ratio.

Copyright

References

Hide All
1.Wynne, K. J. and Rice, R.W., Annu. Rev. Mater. Sci. 14, 297334 (1984).
2.Seyferth, D. and Wiseman, G.H., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D.R. (Wiley-Interscience, New York, 1984), pp. 26562671.
3.Schwartz, K.B., Rowcliffe, D. J., Blum, Y.D., and Raine, R.M., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), pp. 265271.
4.Schmit, W. R., Sukumar, V., Hurley, W. J. Jr., Garcia, R., Doremus, R.H., and Interrante, L.V., J. Am. Ceram. Soc. 73 (8), 24122418 (1990).
5.Funayama, O., Arai, M., Tashiro, Y., Aoki, H., Suzuki, T., Tamura, K., Kaya, H., Nishii, H., and Isoda, T., J. Ceram. Soc. Jpn. 98 (1), 104107 (1990).
6.Yajima, S., Okamura, K., Hayashi, J., and Omori, M., Chem. Lett. (9), 931934 (1975).
7.Yajima, S., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59 (7–8), 324327 (1976).
8.West, R., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D.R. (WileyInterscience, New York, 1984), pp. 235244.
9.Paine, R. T. and Narula, C.K., Chem. Mater. 5, 269279 (1993).
10.Yajima, S., Iwai, T., Yamanaka, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16, 13491355 (1981).
11.Soraru, G.D., Ravagni, A., Maschio, R.D., and Arturan, G., J. Am. Ceram. Soc. 74 (9), 22202223 (1991).
12.Soraru, G.D., Ravagni, A., and Campostrini, R., J. Eur. Ceram. Soc. 8, 2934 (1991).
13.Seyferth, D., Brodt, G., and Boury, B., J. Am. Ceram. Soc. 73 (7), 21312133 (1990).
14.Schmit, W. R., Hurley, W. J. Jr., Doremus, R.H., Interrante, L.V., and Marchetti, P. S., in Advanced Composite Materials, edited by Sacks, M.D. (Ceram. Trans. 19, The American Ceramic Society, Westerville, OH, 1991), pp. 1925.
15.Seyferth, D. and Plenio, H., J. Mater. Sci. Lett. 15, 348349 (1996).
16.Bill, J., Friess, M., Aldinger, F., and Riedel, R., in Better Ceramics Through Chemistry VI, edited by Cheetham, A.K., Brinker, C. J., Mecartney, M. L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 605615.
17.Bill, J. and Aldinger, F., Adv. Mater. 7 (9), 775787 (1995).
18.Reidel, R. and Dressler, W., Ceram. Int. 22, 233239 (1996).
19.Funayama, O., Kato, T., Tashiro, Y., and Isoda, T., J. Am. Ceram. Soc. 76 (3), 717723 (1993).
20.Funayama, O., Tashiro, Y., Aoki, T., and Isoda, T., J. Jpn. Ceram. Soc. 102 (10), 908912 (1994).
21.Iwamoto, Y., Matsubara, H., and Brook, R. J., in Ceramic Processing Science and Technology, edited by Hausner, H., Messing, G. L., and Hirano, S. (Ceram. Trans. 51, The American Ceramic Society, Westerville, OH, 1995), pp. 193197.
22.Niihara, K., Izaki, K., and Kawakami, T., J. Mater. Sci. Lett. 10, 112114 (1990).
23.Sasaki, G., Nakase, H., Suganuma, K., Fujita, T., and Niihara, K., J. Jpn. Ceram. Soc. 100 (4), 536540 (1992).
24.Ukyo, Y., Kandori, T., and Wada, S., J. Jpn. Ceram. Soc. 101 (12), 536540 (1992).
25.Seyferth, D., Wiseman, G., and Prud'homme, C., J. Am. Ceram. Soc. 66 (1), C13 (1983).
26.Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, 5th ed. (JohnWiley & Sons, Inc., New York, 1991), Chaps. 3–4.
27.Evans, W. J. and Solleberger, M. S., J. Am. Chem. Soc. 108, 60956096 (1986).
28.Blanchard, C.R. and Schwab, S. T., J. Am. Ceram. Soc. 77 (7), 17291739 (1994).
29.Saito, H., Hayashi, T., and Miura, K., J. Chem. Soc. Jpn., 13711377 (1981).
30.Wang, M-J. and Wada, H., J. Mater. Sci. 25, 16901698 (1990).
31.Hoffman, M. J. and Petzow, G., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I.W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), pp. 315.

Microstructural development of Si3N4–SiC–Y2O3 ceramics derived from polymeric precursors

  • Yuji Iwamoto (a1), Ko-ichi Kikuta (a2) and Shin-ichi Hirano (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed