Skip to main content Accessibility help
×
Home

Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films

  • Eva I. Preiß (a1), Hao Lyu (a1), Jan P. Liebig (a1), Gunther Richter (a2), Florentina Gannott (a3), Patric A. Gruber (a4), Mathias Göken (a1), Erik Bitzek (a1) and Benoit Merle (a5)...

Abstract

The microstructure contribution to the very low fracture toughness of freestanding metallic thin films was investigated by bulge fracture tests on 200-nm-thick {100} single-crystalline and polycrystalline silver films. The single-crystalline films exhibited a significantly lower fracture toughness value (KIC= 0.88 MPa m1/2) than their polycrystalline counterparts (KIC= 1.45 MPa m1/2), which was rationalized by the observation of an unusual crack initiation behavior—characterized by twinning in front of the notch tip—during in situ testing in the atomic force microscope. Twinning was also observed as a dominant deformation mechanism in atomistic simulations. This twinning tendency is explained by comparing the resolved shear stresses acting on the leading partial dislocation and the full dislocation, which allows to develop a size- and orientation-dependent twinning criterion. The fracture toughness of polycrystalline samples was found to be higher because of the energy dissipation associated with full dislocation plasticity and because of crack meandering along grain boundaries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to this author. e-mail: benoit.merle@fau.de

Footnotes

Hide All
b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Footnotes

References

Hide All
1.Wang, H-W., Kang, Y-L., Zhang, Z-F., and Qin, Q-H.: Size effect on the fracture toughness of metallic foil. Int. J. Fract. 123, 177 (2003).
2.Hirakata, H., Takeda, Y., Kondo, T., and Minoshima, K.: Direct observation of the thickness effect on critical crack tip opening displacement in freestanding copper submicron-films by in situ electron microscopy fracture toughness testing. Int. J. Fract. 192, 203 (2015).
3.Hosokawa, H., Desai, A.V., and Haque, M.A.: Plane stress fracture toughness of freestanding nanoscale thin films. Thin Solid Films 516, 6444 (2008).
4.Hirakata, H., Nishijima, O., Fukuhara, N., Kondo, T., Yonezu, A., and Minoshima, K.: Size effect on fracture toughness of freestanding copper nano-films. Mater. Sci. Eng., A 528, 8120 (2011).
5.Kondo, T., Hiramine, K., Hirakata, H., and Minoshima, K.: Fracture toughness of freestanding copper films with a thickness of 39 nm. Eng. Fract. Mech. 200, 521 (2018).
6.Preiß, E.I., Gannott, F., Göken, M., and Merle, B.: Scaling of the fracture toughness of freestanding metallic thin films with the yield strength. Mater. Res. Lett. 6, 607 (2018).
7.CES EduPack Database (Granta Design Ltd., Cambridge, U.K., 2019).
8.Pardoen, T., Hachez, F., Marchioni, B., Blyth, P.H., and Atkins, A.G.: Mode I fracture of sheet metal. J. Mech. Phys. Solids 52, 423 (2004).
9.Bluhm, J.I.: A model for the effect of thickness on fracture toughness. ASTM Proc. 61, 1324 (1961).
10.Preiß, E.I., Merle, B., and Göken, M.: Understanding the extremely low fracture toughness of freestanding gold thin films by in situ bulge testing in an AFM. Mater. Sci. Eng., A 691, 218 (2017).
11.Vayrette, R., Galceran, M., Coulombier, M., Godet, S., Raskin, J-P., and Pardoen, T.: Size dependent fracture strength and cracking mechanisms in freestanding polycrystalline silicon films with nanoscale thickness. Eng. Fract. Mech. 168, 190 (2016).
12.Ast, J., Ghidelli, M., Durst, K., Göken, M., Sebastiani, M., and Korsunsky, A.M.: A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 173, 107762 (2019).
13.Pineau, A., Benzerga, A.A., and Pardoen, T.: Failure of metals I: Brittle and ductile fracture. Acta Mater. 107, 424 (2016).
14.Dugdale, H., Armstrong, D.E.J., Tarleton, E., Roberts, S.G., and Lozano-Perez, S.: How oxidized grain boundaries fail. Acta Mater. 61, 4707 (2013).
15.Hosseinian, E., Gupta, S., Pierron, O.N., and Legros, M.: Size effects on intergranular crack growth mechanisms in ultrathin nanocrystalline gold free-standing films. Acta Mater. 143, 77 (2018).
16.Sutton, A.P. and Balluffi, R.W.: Interfaces in Crystalline Materials (Clarendon Press, Oxford, U.K., 1995).
17.Wang, J.S. and Anderson, P.M.: Fracture behavior of embrittled fcc metal bicrystals. Acta Metall. Mater. 39, 779 (1991).
18.Kupka, D., Huber, N., and Lilleodden, E.T.: A combined experimental-numerical approach for elasto-plastic fracture of individual grain boundaries. J. Mech. Phys. Solids 64, 455 (2014).
19.Möller, J.J. and Bitzek, E.: Fracture toughness and bond trapping of grain boundary cracks. Acta Mater. 73, 1 (2014).
20.Liddle, J.A., Huggins, H.A., Mulgrew, P., Harriott, L.R., Wade, H.H., and Bolan, K.: Fracture strength of thin ceramic membranes. Mater. Res. Soc. Symp. Proc. 338, 501 (1994).
21.Merle, B. and Göken, M.: Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests. Acta Mater. 59, 1772 (2011).
22.Xiang, Y., McKinnell, J., Ang, W-M., and Vlassak, J.J.: Measuring the fracture toughness of ultra-thin films with application to AlTa coatings. Int. J. Fract. 144, 173 (2007).
23.Jaddi, S., Coulombier, M., Raskin, J-P., and Pardoen, T.: Crack on a chip test method for thin freestanding films. J. Mech. 123, 267 (2019).
24.El-Naaman, S.A. and Nielsen, K.L.: Observations on mode I ductile tearing in sheet metals. Eur. J. Mech. A Solid. 42, 54 (2013).
25.Nielsen, K.L. and Hutchinson, J.W.: Steady-state, elastic-plastic growth of slanted cracks in symmetrically loaded plates. Int. J. Impact Eng. 108, 286 (2017).
26.Hirth, J.P. and Lothe, J.: Theory of Dislocations (John Wiley & Sons, Hoboken, New Jersey, 1982).
27.Liebowitz, H. and Sih, G.C.: Fracture—An advanced treatise. In Mathematical Fundamentals, Chapter Mathematical Theories of Brittle Fracture, Vol. 2 (Academic Press Inc., 1968); pp. 67190.
28.Bitzek, E. and Gumbsch, P.: Mechanisms of dislocation multiplication at crack tips. Acta Mater. 61, 1394 (2013).
29.Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).
30.Sedlmayr, A., Bitzek, E., Gianola, D.S., Richter, G., Mönig, R., and Kraft, O.: Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Mater. 60, 3985 (2012).
31.Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
32.Bitzek, E.: Atomistic study of twinning in gold nanowhiskers. J. Solid Mech. Mater. Eng. 6, 99 (2012).
33.Williams, P.L., Mishin, Y., and Hamilton, J.C.: An embedded-atom potential for the Cu–Ag system. Modell. Simul. Mater. Sci. Eng. 14, 817 (2006).
34.Hirakata, H., Yoshida, T., Kondo, T., and Minoshima, K.: Effects of film thickness on critical crack tip opening displacement in single-crystalline and polycrystalline submicron Cu films. Eng. Fract. Mech. 159, 98 (2016).
35.Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).
36.Liebig, J.P., Krauß, S., Göken, M., and Merle, B.: Influence of stacking fault energy and dislocation character on slip transfer at coherent twin boundaries studied by micropillar compression. Acta Mater. 154, 261 (2018).
37.Tyson, W.R. and Miller, W.A.: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62, 267 (1977).
38.Pashley, D.W.: A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope. Proc. R. Soc. London, Ser. A 255, 218 (1960).
39.Oh, S.H., Legros, M., Kiener, D., Gruber, P., and Dehm, G.: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater. 55, 5558 (2007).
40.Barg, A.I., Rabkin, E., and Gust, W.: Faceting transformation and energy of a Σ3 grain boundary in silver. Acta Metall. 43, 4067 (1995).
41.Hanawa, T. and Oura, K.: Deposition of Ag on Si(100) surfaces as studied by LEED-AES. Jpn. J. Appl. Phys. 16, 519 (1977).
42.Hanbücken, M. and Neddermeyer, H.: A LEED-AES study of the growth of Ag films on Si(100). Surf. Sci. 114, 563 (1982).
43.Khare, C., Gerlach, J.W., Patzig, C., and Rauschenbach, B.: Ion beam sputter deposition of epitaxial Ag films on native oxide covered Si(100) substrates. Appl. Surf. Sci. 258, 9617 (2012).
44.Nason, T.C., You, L., and Lu, T-M.: Room temperature epitaxial growth of Ag on low-index Si surfaces by a partially ionized beam. J. Appl. Phys. 72, 466 (1992).
45.Je, J.H., Kang, T.S., and Noh, D.Y.: Epitaxial and island growth of Ag/Si(001) by RF magnetron sputtering. J. Appl. Phys. 81, 6716 (1997).
46.Yang, W., Lambeth, D.N., Tang, L., and Laughlin, D.E.: Epitaxial ag templates on Si(001) for bicrystal CoCrTa media. J. Appl. Phys. 81, 4370 (1997).
47.Zaefferer, S. and Elhami, N-D.: Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75, 20 (2014).
48.Merle, B., Cassel, D., and Göken, M.: Time-dependent deformation behavior of freestanding and SiNx-supported gold thin films investigated by bulge tests. J. Mater. Res. 30, 2161 (2015).
49.Merle, B.: Creep behavior of gold thin films investigated by bulge testing at room and elevated temperature. J. Mater. Res. 34, 69 (2019).10.1557/jmr.2018.287
50.Grovenor, C.R.M., Hentzell, H.T.G., and Smith, D.A.: The development of grain structure during growth of metallic films. Acta Metall. 32, 773 (1984).
51.Vlassak, J.J. and Nix, W.D.: New bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).
52.Irwin, G.R.: Fracture. Handbuch Der Physik (Springer-Verlag, Berlin, Germany, 1958); pp. 551590.
53.Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).
54.Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).
55.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

Keywords

Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films

  • Eva I. Preiß (a1), Hao Lyu (a1), Jan P. Liebig (a1), Gunther Richter (a2), Florentina Gannott (a3), Patric A. Gruber (a4), Mathias Göken (a1), Erik Bitzek (a1) and Benoit Merle (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed