Skip to main content Accessibility help
×
Home

Microstructural characterization of phase-separated co-deposited Cu–Ta immiscible alloy thin films

  • Max Powers (a1), Benjamin Derby (a1), Alex Shaw (a1), Evan Raeker (a1) and Amit Misra (a1)...

Abstract

Elevated temperature co-sputtering of immiscible elements results in a variety of self-organized morphologies due to phase separation. Cu–Ta is used as a model system to understand the evolution of phase-separated microstructural morphologies by co-sputtering thin films with nominal 50–50 at.% composition at four temperatures: 25, 400, 600, and 800 °C. Scanning/transmission electron microscopy of the film cross sections showed the microstructure morphology varied from nanocrystalline Cu–Ta at 25 °C to a wavy ribbon-like structure at 400 °C, to Cu-rich agglomerates surrounded by Ta-rich veins at 600 and 800 °C. In the agglomerate-vein morphology, microstructural features were present on two length scales, from a few nanometers to a few tens of nanometers, thus making the structures hierarchical. On the nanoscale, the Cu-rich agglomerates contained Ta precipitates, whereas the Ta-rich veins had embedded Cu nanocrystals. The various microstructures can be attributed to the highly disparate constituent element interdiffusion at the deposition temperatures with the Cu having orders of magnitude higher mobility than Ta at the deposition temperatures. This study of processing–microstructure relationship will be useful in guiding the design of hierarchical multiphase microstructures in binary or multicomponent thin films with tailored mechanical properties.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: maxpow@umich.edu

References

Hide All
1.Avallone, J., Nizolek, T., Pollock, T., and Begley, M.: A model for high temperature deformation of nanolaminate Cu–Nb composites. Mater. Sci. Eng., A 761, 138016 (2019).
2.Wu, K., Zhang, J., Li, J., Wang, Y., Liu, G., and Sun, J.: Length-scale-dependent cracking and buckling behaviors of nanostructured Cu/Cr multilayer films on compliant substrates. Acta Mater. 100, 344358 (2015).
3.Cui, Y., Derby, B., Li, N., and Misra, A.: Design of bicontinuous metallic nanocomposites for high-strength and plasticity. Mater. Des. 166, 107602 (2019).
4.Vullers, F.T.N. and Spolenak, R.: From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W–Cu thin films. Acta Mater. 99, 213227 (2015).
5.Cui, Y., Li, N., and Misra, A.: An overview of interface-dominated deformation mechanisms in metallic nanocomposites elucidates using in situ straining in a TEM. J. Mater. Res. 34, 14701478 (2019).
6.Mara, N. and Beyerlin, I.: Interface-dominant multilayers fabricated by severe plastic deformation: Stability under extreme conditions. Curr. Opin. Solid State Mater. Sci. 19, 265276 (2015).
7.Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 6265 (2007).
8.Wang, Y.C., Misra, A., and Hoagland, R.: Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Mater. 54, 15931598 (2006).
9.Beyerlin, I. and Wang, J.: Interface-drive mechanisms in cubic/noncubic nanolaminates at different scales. MRS Bull. 44, 3139 (2019).
10.Thornton, J.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Tech. 11, 666670 (1974).
11.Derby, B., Cui, Y., Baldwin, J.K., and Misra, A.: Effects of substrate temperature and deposition rate on the phase separated morphology of co-sputtered Cu–Mo thin films. Thin Solid Films 647, 5056 (2018).
12.Derby, B., Cui, Y., Baldwin, J.K., Arroyave, R., Demkowicz, M., and Misra, A.: Processing of novel psuedomorphic Cu–Mo hierarchies in thin films. Mater. Res. Lett. 7, 111 (2019).
13.Lu, Y., Wang, C., Gao, Y., Shi, R., Liu, X., and Wang, Y.: Microstructure map for self-organized phase separation during film deposition. Phys. Rev. Lett. 109, 086101 (2012).
14.Kumar, A., Derby, B., Raghavan, R., Misra, A., and Demkowicz, M.: 3-D phase-field simulations of self-organized composite morphologies in physical vapor deposited phase-separating binary alloys. J. Appl. Phys 126, 075306 (2019).
15.Holloway, K., Fryer, P., Cabral, C., Harper, J.M.E., Bailer, P.J., and Kelleher, K.H.: Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions. J. Appl. Phys 71, 5433 (1992).
16.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
17.Buehler, M. and Misra, A.: Mechanical behavior of nanocomposites. MRS Bull. 44, 1924 (2019).
18.Muller, C.M., Parviainen, S., Djurabekova, F., Nordlund, K., and Spolenak, R.: The as-deposited structure of co-sputtered Cu–Ta alloys, studied by X-ray diffraction and molecular dynamics simulations. Acta Mater. 82, 5163 (2015).
19.Muller, C.M., Sologubenko, A., Gerstl, S., and Spolenak, R.: On spinodal decomposition in Cu-34 at.% Ta thin films—An atom probe tomography and transmission electron microscopy study. Acta Mater. 89, 181192 (2015).
20.Kwon, K.W., Ryu, C., Sinclair, R., and Wong, S.S.: Evidence of heteroepitaxial growth of copper on beta-tantalum. Appl. Phys. Lett. 71, 3069 (1997).
21.Lee, H.J., Kwon, K.W., Ryu, C., and Sinclair, R.: Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction. Acta Mater. 47, 39653975 (1999).
22.Jackson, M. and Li, C.: Stress relaxation and hillock growth in thin films. Acta Metall. 30, 19932000 (1982).
23.Segmuller, A. and Murakami, M.: X-ray diffraction analysis of strains and stresses in thin films. Treatise Mater. Sci. Technol. 27, 143200 (1988).
24.Jiang, A., Tyson, T.A., Axe, L., Gladczuk, L., Sosnowski, M., and Cote, P.: The structure and stability of β-Ta thin films. Thin Solid Films 479, 166173 (2005).
25.Colin, J.J., Abadias, G., Michel, A., and Jaouen, C.: On the origin of the metastable β-Ta phase stabilization in sputtered thin films. Acta Mater. 126, 481493 (2017).
26.Read, M. and Altman, C.: A new structure in tantalum thin films. Appl. Phys. Lett. 7, 51 (1965).
27.Jiang, A., Yohannan, A., Nnolim, N., Tyson, T.A., Axe, L., Lee, S., and Cote, P.: Investigation of the structure of β-Ta. Thin Solid Films 437, 116122 (2003).
28.Lee, S.L., Doxbeck, M., Mueller, J., Cipollo, M., and Cote, P.: Texture, structure, and phase transformation in sputter beta tantalum coating. Surf. Coating. Technol. 177–178, 4451 (2004).
29.Clevenger, L.A., Mutscheller, A., Harper, J.M.E., Cabral, C., and Barmak, K.: The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films. J. Appl. Phys. 72, 4918 (1992).
30.Wang, J. and Zhang, X.: Twinning effects on strength and plasticity of metallic materials. MRS Bull. 41, 274281 (2016).
31.Puthucode, A., Devaraj, A., Nag, S., Bose, S., Ayyub, P., Kaufman, M.J., and Banerjee, R.: De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper-niobium system. Phil. Mag. 94, 16221641 (2014).
32.Rajagopalan, M., Darling, K., Turnage, S., Koju, R.K., Hornbuckle, B., Mishin, Y., and Solanki, K.N.: Microstructural evolution in a nanocrystalline Cu–Ta alloy: A combined in situ TEM and atomistic study. Mater. Des. 113, 178185 (2017).
33.Powers, M., Derby, B., Raeker, E., Champion, N., and Misra, A.: Hillock formation in co-deposited thin films of immiscible metal alloy systems. Thin Solid Films 693, 137692 (2020).
34.Nastasi, M., Saris, F.W., Hung, L.S., and Mayer, J.W.: Stability of amorphous Cu/Ta and Cu/W alloys. J. Appl. Phys. 58, 30523058 (1985).
35.Xue, J., Li, Y., Hao, L., Gao, L., Qian, D., Song, Z., and Chen, J.: Investigation on the interfacial stability of multilayered Cu–W films at elevated deposition temperatures during co-sputtering. Vacuum 166, 162169 (2019).
36.Bonzel, H.P.: Surface diffusion tables. In Diffusion in Solid Metals and Alloys, 1st ed., Mehrer, H., ed. (Springer-Verlag, Berlin, Germany, 1990); pp. 728744.
37.Adams, C.D., Atzmon, M., Cheng, Y.T., and Srolovitz, D.J.: Phase separation during co-deposition of Al–Ge thin films. J. Mater. Res. 7, 653666 (1991).
38.Fukutani, K., Tanji, K., Saito, T., and Den, T.: Fabrication of well-aligned Al nanowire array embedded in Si matrix using limited spinodal decomposition. Jpn. J. Appl. Phys. 47, 11401146 (2008).
39.Ohring, M.: Materials Science of Thin Films: Deposition and Structure, 2nd ed. (Academic Press, San Diego, 2002); p. 495.
40.Stewart, J. and Dingreville, R.: Microstructure morphology and concentration modulation of nanocomposite thin-films during simulation physical vapor deposition. Acta Mater. 188, 181191 (2020).
41.Banerjee, R., Puthucode, A., Bose, S., and Ayyub, P.: Nanoscale phase separation in amorphous immiscible copper-niobium alloy thin films. Appl. Phys. Lett. 90, 021904 (2007).

Keywords

Microstructural characterization of phase-separated co-deposited Cu–Ta immiscible alloy thin films

  • Max Powers (a1), Benjamin Derby (a1), Alex Shaw (a1), Evan Raeker (a1) and Amit Misra (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.