Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T22:10:56.640Z Has data issue: false hasContentIssue false

Microstructural characterization of Al98.5wt. %Si1.0wt. %Cu0.5wt. % on chemical-vapor-deposited W

Published online by Cambridge University Press:  31 January 2011

Carey A. Pico
Affiliation:
Texas Instruments Inc. Corporate Research, Development, and Engineering, P.O. Box 655012, MS 944, Dallas, Texas 75265
Tom D. Bonifield
Affiliation:
Texas Instruments Inc. Corporate Research, Development, and Engineering, P.O. Box 655012, MS 944, Dallas, Texas 75265
Get access

Abstract

The microstructural and morphological properties of thin (6000 Å) Al98.5wt. %Si1.0wt. %Cu0.5wt. % films on chemical-vapor-deposited tungsten-coated substrates have been characterized as functions of substrate temperature during deposition and a postdeposition sinter. Scanning electron and transmission electron microscopic investigations show these properties can be categorized with respect to the substrate temperature during deposition. The Al98.5wt. %Si1.0wt. %Cu0.5wt. % films deposited on substrates heated at temperatures ≤200 °C are rough and are comprised of rounded grains. For deposition on substrates heated at ≤300 °C, the films are smooth. Large voids and small precipitates (presumably Al2Cu) are present in the films deposited at 400 °C. The films retain their as-deposited texture during a 450 °C sinter. Precipitates and evidence of W interactions occur in the sintered films deposited on the lower temperature substrates. In addition, the shapes of thermal hillocks and mesa-like protrusions that form during the sintering process are influenced by the films' as-deposited morphologies.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ames, I.d'Heurle, F., and Horstmann, R.IBM J. Res. Dev. 14, 461 (1970).CrossRefGoogle Scholar
2Attardo, M.J. and Rosenberg, R.J. Appl. Phys. 41, 2381 (1970).CrossRefGoogle Scholar
3Scoggan, G. A.Agarwala, B. N.Peressini, P. P. and Brouillard, A.13th Ann. Proc. Rel. Phys. 151 (1975).Google Scholar
4Vaiday, S.Fraser, D.B. and Sinha, A.K.18th Int. Rel. Phys. Symp. 165 (1980).Google Scholar
5Vaiday, S.Fraser, D.B. and Sinha, A.K.Thin Solid Films 75, 253 (1980).Google Scholar
6Merchant, P. and Cass, T.22nd Int. Rel. Phys. Symp. 259 (1984).Google Scholar
7Denison, D. R. and Hartsough, L. D.J. Vac. Sci. Technol. 17, 1326 (1980).Google Scholar
8Burkstrand, J. M. and Hovland, C. T.J. Vac. Sci. Technol. A1, 449 (1983).Google Scholar
9Thomas, M.E.Keyser, T.K. and Goo, E.K.W.J. Appl. Phys. 59, 3768 (1986).CrossRefGoogle Scholar
10Ahn, K.Y.Lin, T. and Madakson, P.B.Thin Solid Films 153, 409 (1987).Google Scholar
11Lin, T.Ahn, K.Y. J.M.Harper, E.Madakson, P.B. and Fryer, P.M., Thin Solid Films 154, 81 (1987).CrossRefGoogle Scholar
12Griffin, A.J.Brontzen, F.R. and Dunn, C.F.Thin Solid Films 150, 237 (1987).CrossRefGoogle Scholar
13Herman, D.S.Schuster, M.A. and Gerber, R.M.J. Vac. Sci. Technol. 9, 515 (1972).CrossRefGoogle Scholar
14Faith, T.J.J. Appl. Phys. 52, 4630 (1981).CrossRefGoogle Scholar
15Chang, C.Y. and Vook, R.W.J. Mater. Res. 4, 1172 (1989).CrossRefGoogle Scholar
16Thomas, S. and Berg, H.M.IEEE Trans. CHMT-10, 252 (1987).Google Scholar
17Weston, D.Wilson, S.R. and Kottke, M.J. Vac. Sci. Technol. A8, 2025 (1990).Google Scholar
18Lawrence, J. D.McPherson, J. W. and Cordasco, V. T.J. Elec-trochem. Soc. 137, 3879 (1990).Google Scholar
19Broadbent, E.K.J. Vac. Sci. Technol. B5, 1661 (1987).Google Scholar
20Brown, D. M.Gorowitz, B.Piacente, P.Saia, R.Wilson, R. and Woodruff, D.IEEE Elect. Dev. Lett. 8, 55 (1987).CrossRefGoogle Scholar
21Bradbury, D.R. and Kamins, T.I.J. Electrochem. Soc. 133, 1215 (1984).Google Scholar
22Pico, C. A. and Blumenthal, R. presented at the spring meeting of the Mater. Res. Soc San Francisco, 1990 (unpublished).Google Scholar
23Hieber, H. and Simon, T.IEEE 24th Int. Rel. Phys. Symp. 253 (1986).Google Scholar
24Pico, C.A. and Bonifield, T.D.J. Mater. Res. 6, 1817 (1991).CrossRefGoogle Scholar
25Pico, C.A. and Bonifield, T.D.J. Mater. Res. 8, 1010 (1993).Google Scholar
26Smith, J.F.Zold, F.T. and Class, W.Thin Solid Films 96, 291 (1982).CrossRefGoogle Scholar
27Sinha, A.K. and Sheng, T.T.Thin Solid Films 48, 117 (1978).CrossRefGoogle Scholar
28Roberts, S. and Dobson, P. J.Thin Solid Films 135, 137 (1986).CrossRefGoogle Scholar
29d'Heurle, F. M., Metall. Trans. 1, 725 (1970).Google Scholar
30Liu, H. Y.Chang, P. H.Bohlman, J. and Tsai, H. L. in Adhesion in Solids, edited by Mattox, D. M.Baglin, J. E. E.Gottschall, R. J. and Batich, C. D. (Mater. Res. Soc. Symp. Proc. 119, Pittsburgh, PA, 1988), p. 153.Google Scholar
31Lin, T.Ahn, K.Y. J.Harper, M.E. and Chaloux, P.N.Proc. 5th Int. VLSI Multilevel Interconnect Conf. 76 (1988).Google Scholar
32Hummel, R. E.Goho, S. Matts, and DeHoff, R. T.22nd Int. Rel. Phys. Symp. 259 (1984).Google Scholar
33Chaudhari, P.J. Appl. Phys. 45, 4339 (1974).CrossRefGoogle Scholar
34Pennebaker, W.B.J. Appl. Phys. 40, 394 (1969).CrossRefGoogle Scholar
35Sharma, S. K. and Spitz, J.Thin Solid Films 65, 339 (1980).CrossRefGoogle Scholar
36Presland, A.E.B.Price, G.L. and Trimm, D.L.Surf. Sci. 29, 424 (1972).Google Scholar
37Gardner, D. S. and Flinn, P. A.IEEE Trans. Electron Devices 35, 2160 (1988).CrossRefGoogle Scholar