Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-27T04:39:03.087Z Has data issue: false hasContentIssue false

Microscratch and load relaxation tests for ultra-thin films

Published online by Cambridge University Press:  31 January 2011

T.W. Wu
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120–6099
Get access

Abstract

The microindenter has proven to be a powerful device in the characterization of the mechanical properties of thin films. The machine has both high resolution in the applied load and penetration depth measurements, as well as the versatility to perform different types of testing. The former provides the capability to deal with extremely thin films, while the latter allows for other mechanical properties, in addition to hardness, to be acquired. Four types of tests, namely indentation, scratch, load relaxation, and indentation fatigue tests can currently be conducted using the microindenter via different operating procedures. Only the scratch and load relaxation techniques will be covered in this paper. In a microscratch test, the normal load, tangential load, scratch length, and acoustic emission are monitored simultaneously during an entire scratch process for the purposes of measuring the critical load and studying the failure mechanisms of the deposited films. The adhesion strength, scratch hardness, fracture toughness, and friction are the mechanical properties which are possible to obtain by using this technique. Results from aluminum, carbon, and zirconia coatings will be discussed. The load relaxation test provides information on the creep properties of the films and results in an empirical constitutive relation between the applied stress and plastic strain rate. The creep properties of DC sputtered Al films will be used as an illustration of this.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hinode, K., Owada, N., Nishida, T., and Mukai, K., J. Vac. Sci. Technol. B 5, 518 (1987).CrossRefGoogle Scholar
2McPherson, J. W. and Dunn, C. F., J. Vac. Sci. Technol. B 5, 1321 (1987).CrossRefGoogle Scholar
3Talke, F. E. and Tseng, R. C., IEEE Trans. Magn. MAG-9, 133 (1973).CrossRefGoogle Scholar
4Kita, T., Kogure, K., Mitsuya, Y., and Nakanishi, T., IEEE Trans. Magn. MAG-16, 873 (1980).CrossRefGoogle Scholar
5Hardwick, D. A., Thin Solid Films 154, 109 (1987).CrossRefGoogle Scholar
6Hoffman, R. W., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 295.Google Scholar
7Rosenmayer, C. T., Brotzen, F. R., and Gale, R. J., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 77.Google Scholar
8Weihs, T. P., Hong, S., Bravman, J. C., and Nix, W. D., J. Mater. Res. 3, 931 (1988).CrossRefGoogle Scholar
9List, F. A. and McKee, R. A., Thin Solid Films 151, 17 (1987).CrossRefGoogle Scholar
10Newey, D., Wilkins, M. A., and Pollock, H. M., J. Phys. E: Sci. Instrum. 15, 119 (1982).CrossRefGoogle Scholar
11Pethica, J., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
12Hannula, S-P., Stone, D., and Li, C-Y., in Electronic Packaging Materials Science, edited by Giess, E. A., Tu, K-N., and Uhlmann, D. R. (Mater. Res. Soc. Symp. Proc. 40, Pittsburgh, PA, 1985), p. 217.Google Scholar
13Wu, T. W., Hwang, C., Lo, J., and Alexopoulos, P. S., Thin Solid Films 166, 299 (1988); IBM Research Report, RJ 6195 (60869), 1988.CrossRefGoogle Scholar
14Wu, T. W., Burn, R. A., Chen, M. M., and Alexopoulos, P. S., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 117; IBM Research Report, RJ 6595 (63555), 1988.Google Scholar
15Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
16Benjamin, P. and Weaver, C., Proc. R. Soc. London A 274, 267 (1960).Google Scholar
17Perry, A. J., Valli, J., and Steinmann, P. A., Surf. Coatings Technol. 36, 559 (1988).CrossRefGoogle Scholar
18Sekler, J., Steinmann, P. A., and Hintermann, H. E., Surf. Coatings Technol. 36, 519 (1988).CrossRefGoogle Scholar
19Bull, S. J., Rickerby, D. S., Matthews, A., Leyland, A., Pace, A. R., and Valli, J., Surf. Coatings Technol. 36, 503 (1988).CrossRefGoogle Scholar
20Rickerby, D. S., Surf. Coatings Technol. 36, 541 (1988).CrossRefGoogle Scholar
21Hamilton, G. M. and Goodman, L. E., J. Appl. Mech. 33, 371 (1966).CrossRefGoogle Scholar
22O'Sullivan, T. C. and King, R. B., J. Tribol. 110, 235 (1988); IBM Research Report, RJ 5363 (55072), 1986.CrossRefGoogle Scholar
23Wu, T. W., Shull, A. L., and Lin, J. in Thin Films: Stresses and Mechanical Properties II, edited by Oliver, W. C., Doerner, M., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990); IBM Research Report RJ 7404 (69206), 1990.Google Scholar
24Berkovich, E. S., Fact. Lab., Moscow 16, 345 (1950); Industr. Diam. Rev. 11, 129 (1951).Google Scholar
25Perry, A. J., Surf. Eng. 2, 183 (1986).CrossRefGoogle Scholar
26Steinmann, P. A., Laeng, P., and Hintermann, H. E., Mater. Tech. 13, 85 (1985).Google Scholar
27Hammer, B., Perry, A. J., Laeng, P., and Steinmann, P. A., Thin Solid Films 96, 45 (1982).CrossRefGoogle Scholar
28Valli, J., J. Vac. Sci. Technol. A 4, 3007 (1986).CrossRefGoogle Scholar
29Valli, J., Makelaand, U., and Matthews, A., Surf. Eng. 2, 49 (1986).CrossRefGoogle Scholar
30Steinmann, P. A., Tardy, Y., and Hintermann, H. E., Thin Solid Films 154, 333 (1987).CrossRefGoogle Scholar
31Oroshnik, J. and Croll, W. K., Adhesion Measurement of Thin Films, Thick Films and Bulk Coatings, edited by Mittal, K. L. (STP 640 ASTM, Philadelphia, PA, 1978), p. 159.Google Scholar
32Ogawa, K., Ohkoshi, T., Takeuchi, T., Mizoguchi, T., and Masumoto, T., Jpn. J. Appl. Phys. 25, 695 (1986).CrossRefGoogle Scholar
33Nir, D., Thin Solid Films 112, 41 (1984).CrossRefGoogle Scholar
34Lawn, B. R. and Wilshaw, R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
35Marshall, D. B. and Lawn, B. R., J. Mater. Sci. 14, 2001 (1979).CrossRefGoogle Scholar
36Rice, J. R., J. Appl. Mech. 55, 98 (1988).CrossRefGoogle Scholar
37Evans, A. G., Drory, M. D., and Hu, M. S., J. Mater. Res. 3, 1043 (1988).CrossRefGoogle Scholar
38Hu, M. S. and Evans, A. G., Acta Metall. 37, 917 (1989).CrossRefGoogle Scholar
39Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, England, 1951), p. 8.Google Scholar
40Wu, T. W., Moshref, M., and Alexopoulos, P. S., Thin Solid Film 187, 295 (1990); IBM Research Report, RJ 6768 (64836), 1989.CrossRefGoogle Scholar
41Teer, D. G. and Arnell, R. D., Principles of Tribology, edited by Hailing, J. (MacMillan Press Ltd., 1978), p. 72.Google Scholar
42Lemons, R. A. and Quate, C. F., Appl. Phys. Lett. 24, 163 (1977).CrossRefGoogle Scholar
43Nikoonahad, M., Contemp. Phys. 25, 129 (1984).CrossRefGoogle Scholar
44 A. Yang, C.M., Wu, T. W., and Scott, J. C., presented at Amer. Phys. Soc. Meeting 1989, St. Louis, MO.Google Scholar
45LaFontaine, W. R., Yost, B., Black, R. D., and Li, C-Y., in Thin Films: Stresses and Mechanical Properties II, edited by Oliver, W. C., Doerner, M., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990).Google Scholar
46Stone, D., LaFontaine, W., Ruoff, S., Hannula, S-P., Yost, B., and Li, C-Y., in Electronic Packaging Materials Science II, edited by Jackson, K. A., Pohanka, R. C., Uhlmann, D. R., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 72, Pittsburgh, PA, 1986), p. 127.Google Scholar