Skip to main content Accessibility help

Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu–Si interfaces

  • Jonathan G. Gigax (a1), Jon K. Baldwin (a1), Chris J. Sheehan (a1), Stuart A. Maloy (a2) and Nan Li (a1)...


Microscale testing has enjoyed significant developments, with the majority of testing focused on tensile/compression type tests and little focus on shear testing. With the recent advances in macroscale shear testing, we developed a novel shear structure for evaluating shear properties of bulk materials and films at the microscale. The shear response in single-crystal copper oriented along the [111] direction was found to have a yield strength of ∼180 MPa. Nanocrystalline copper specimens with different orientations showed sensitivity to the film texture with a shear yield strength nearly three times that of single-crystal copper. Shear specimens were fabricated with Cu film–Si substrate interface near the middle of the shear region and compressed to fracture. The shear response showed a mixed behavior of the stiff Si substrate and softer nanocrystalline film and failed in a brittle manner, indicating a response unique to the interface.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475487 (1994).
2.Poole, W.J., Ashby, M.F., and Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559564 (1996).
3.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).
4.Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 12391263 (1999).
5.Huang, Y., Xue, Z., Gao, H., Nix, W.D., and Xia, Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15, 17861796 (2000).
6.Durst, K., Backes, B., Franke, O., and Goken, M.: Indentation size effect in metallic materials: Modelling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 25472555 (2006).
7.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986989 (2004).
8.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 18211830 (2005).
9.Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G.: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 11191125 (2006).
10.Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 7987 (2009).
11.Kim, J.Y. and Greer, J.: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).
12.Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319329 (2008).
13.Kim, J.Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 23552363 (2010).
14.Jennings, A.T., Burek, M.J., and Greer, J.: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).
15.Soler, R., Wheeler, J.M., Chang, H.J., Segurado, J., Michler, J., Llorca, J., and Molina-Aldareguia, J.M.: Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Mater. 81, 5057 (2014).
16.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525529 (2005).
17.Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., and Nix, W.D.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602608 (2008).
18.Walter, M. and Kraft, O.: A new method to measure torsion moments on small-scaled specimens. Rev. Sci. Instrum. 82, 035109 (2011).
19.Liu, D.B., He, Y.M., Dunstan, J.D., Zhang, B., Gan, Z.P., Hu, P., and Ding, H.M.: Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plast. 41, 30 (2013).
20.Dai, Y.J., Huan, Y., Gao, M., Dong, J., Liu, W., Pan, M.X., Wang, W.H., and Bi, Z.L.: Development of a high-resolution micro-torsion tester for measuring the shear modulus of metallic glass fibers. Meas. Sci. Technol. 26, 025902 (2015).
21.Heyer, J.K., Brinckmann, S., Pfetzing-Micklich, J., and Eggeler, G.: Microshear deformation of gold single crystals. Acta Mater. 62, 225 (2014).
22.Wierczorek, N., Laplanche, G., Heyer, J-K., Parsa, A.B., Pfetzing-Micklich, J., and Eggeler, G.: Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments. Acta Mater. 113, 320 (2016).
23.Steinmann, P.A., Tardy, Y., and Hintermann, H.E.: Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Films 154, 333349 (1987).
24.Larsson, M., Olsson, M., Hedenqvist, P., and Hogmark, S.: Mechanisms of coating failure as demonstrated by scratch and indentation testing of TiN coated HSS. Surf. Eng. 16, 436444 (2000).
25.Beak, B.D., Harris, A.J., and Liskiewicz, T.W.: Review of recent progress in nanoscratch testing. Tribol.-Mater., Surf. Interfaces 7, 8796 (2013).
26.Maio, D.D. and Roberts, S.G.: Measuring fracture toughness of coatings using FIB-machined microbeams. J. Mater. Res. 20, 299302 (2005).
27.Matoy, K., Detzel, T., Muller, M., Motz, C., and Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf. Coat. Technol. 204, 878881 (2009).
28.Schaufler, J., Schmid, C., Durst, K., and Goken, M.: Determination of the interfacial strength and fracture toughness of a-C:H coatings by in situ microcantilever bending. Thin Solid Films 522, 480484 (2012).
29.Chen, K., Mu, Y., and Meng, W.J.: A new experimental approach for evaluating the mechanical integrity of interfaces between hard coatings and substrates. MRS Commun. 4, 1923 (2014).
30.Mu, Y., Zhang, X., Hutchinson, J.W., and Meng, W.J.: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. J. Mater. Res. 32, 14211431 (2017).
31.Wu, K., Zhang, J.Y., Liu, G., Zhang, P., Cheng, P.M., Li, J., Zhang, G.J., and Sun, J.: Buckling behaviors and adhesion energy of nanostructured Cu/X (X = Nb, Zr) multilayer films on a compliant substrate. Acta Mater. 61, 78897903 (2013).
32.Radchenko, I., Anwarali, H.P., Tippabhotla, S.K., and Budiman, A.S.: Effects of interface shear strength during failure of semicoherent metal/metal nanolaminates: An example of accumulative rollbonded Cu/Nb. Acta Mater. 156, 125135 (2018).
33.Mayer, C., Li, N., Mara, N., and Chawla, N.: Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater. Sci. Eng., A 621, 229 (2015).
34.Gray, G.T., Vecchio, K.S., and Livescu, V.: Compact forced simple-shear sample for studying shear localization in materials. Acta Mater. 103, 12 (2016).
35.Peirs, J., Verleysen, U.P., Degrieck, J., and Coghe, F.: The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V. Int. J. Impact Eng. 37, 703 (2010).
36.Mayr, C., Eggeler, G., Webster, G.A., and Peter, G.: Double shear creep testing of superalloy single crystals at temperatures above 1000 °C. Mater. Sci. Eng., A 199, 121 (1995).
37.Livingston, J.D.: Density and distribution of dislocations in deformed copper crystals. Acta Metall. 10, 229239 (1962).
38.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
39.Tang, F. and Schoenung, J.M.: Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation. Mater. Sci. Eng., A 493, 101 (2008).
40.You, Z., Li, X., Gui, L., Lu, Q., Zhu, T., Gao, H., and Lu, L.: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217 (2013).
41.Anderoglu, O., Misra, A., Wang, J., Hoagland, R.G., Hirth, J.P., and Zhang, X.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875 (2010).
42.Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J.Y., and Hirth, J.P.: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).
43.Li, N., Wang, J., Huang, J.Y., Misra, A., and Zhang, X.: Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scr. Mater. 64, 149 (2011).
44.Li, N., Wang, J., Zhang, X., and Misra, A.: In situ TEM study of dislocation-twin boundaries interaction in nanotwinned Cu films. JOM 63, 62 (2011).
45.Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893979 (2008).
46.Segal, V.M.: Materials processing by simple shear. Mater. Sci. Eng., A 197, 157164 (1995).
47.Segal, V.M.: Severe plastic deformation: Simple shear versus pure shear. Mater. Sci. Eng., A 338, 331344 (2002).
48.Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881981 (2006).
49.Derby, B.: The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater. 39, 955962 (1991).
50.Bagherpour, E., Qods, F., Ebrahimi, R., and Miyamoto, H.: Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): Role of shear reversal. Mater. Sci. Eng., A 666, 324338 (2016).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed