Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T13:33:53.130Z Has data issue: false hasContentIssue false

Metastable nanosized diamond formation from a C-H-O fluid system

Published online by Cambridge University Press:  31 January 2011

S.K. Simakov*
Affiliation:
St. Petersburg University, St. Petersburg 199034, Russia
*
a)Address all correspondence to this author. e-mail: simakov@ap1250.spb.edu
Get access

Abstract

The model of nanosized diamond particles formation at metastable P-T parameters from a C-H-O fluid system is presented. It explains the hydrothermal formation and growth of diamond and the specifics of chemical vapor deposition (CVD) diamond synthesis gas mixtures at low P-T parameters. Further, the model explains the genesis of interstellar nanodiamond formations in space and the genesis of metamorphic microdiamonds in shallow depth Earth rocks. In contrast to models where many possible reactions are considered, the present model makes the simplest possible assumptions about the key processes, and is then able to account for various tendencies seen in experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Badziag, P., Verwoerd, W.S., Ellis, W.P., Greimer, N.R.: Nanometer-sized diamonds are more stable than graphite. Nature 343, 244 (1990)Google Scholar
2.Simakov, S.K.: Thermodynamic estimation of oxygen-hydrogen conditions influence on diamond and graphite critical nucleus formation at processes of methane destruction at low pressures. Russ. J. Phys. Chem. 69, 346 (1995)Google Scholar
3.Shatsky, V.S., Sobolev, N.V.: Origin of diamonds in metamorphic rocks. Dokl. Akad. Nauk 331, 217 (1993)Google Scholar
4.DeVries, R.C., Roy, R., Somiy, S., Yamada, S.: A review of liquid phase systems pertinent to diamond synthesis. Trans. Mater. Res. Soc. Jpn. 14B, 1421 (1994)Google Scholar
5.Roy, R., Ravichandran, D., Ravindranathan, P., Badzian, A.: Evidence for hydrothermal growth of diamond in the C-H-O and C-H-O halogen system. J. Mater. Res. 11, 1164 (1996)Google Scholar
6.Szymanski, A., Abgarowicz, E., Bakon, A., Niedbalska, A., Salacinski, R., Sentek, J.: Diamond formed at low pressures and temperatures through liquid-phase hydrothermal synthesis. Diamond Relat. Mater. 4, 234 (1995)CrossRefGoogle Scholar
7.Zhao, X-Z., Rustum, R., Kuruvilla, A.C., Badzian, A.: Hydrothermal growth of diamond in metal–C–H2O systems. Nature 385, 513 (1996)CrossRefGoogle Scholar
8.Bachmann, P.K., Leers, D., Lydtin, H.: Towards a general concept of diamond chemical vapour deposition. Diamond Relat. Mater. 1, 1 (1991)CrossRefGoogle Scholar
9.Marinelli, M., Milani, E., Montuori, M., Paoletti, A., Tebano, A., Balestrino, G., Paroli, P.: Compositional and spectroscopic study of the growth of diamond films from several gaseous mixtures. J. Appl. Phys. 76, 5702 (1994)CrossRefGoogle Scholar
10.Ford, I.J.J.: Boundaries of the diamond domain in the C–H–O diagram of carbon film deposition. J. Phys. D: Appl. Phys. 29, 2229 (1996)Google Scholar
11.Eaton, S.C., Sunkara, M.K.: Construction of a new C-H-O ternary diagram for diamond deposition from the vapor phase. Diamond Relat. Mater. 9, 1320 (2000)Google Scholar
12.Deryagin, B.V., Fedoseev, D.V.: Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow 1977)115 Google Scholar
13.Chauhan, S.P., Angus, J.C., Gardner, N.C.J.: Kinetics of carbon deposition on diamond powder. J. Appl. Phys. 47, 4746 (1976)CrossRefGoogle Scholar
14.Chaikovskii, E.F., Rosenberg, G.H.: Phase diagram of carbon and possibility of diamond formation at low pressures. Dokl. Akad. Nauk 279, 1372 (1984)Google Scholar
15.Gamarnik, M.Y.: Energetical preference of diamond nanoparticles. Phys. Rev. B: Condens. Matter 54, 2150 (1996)CrossRefGoogle ScholarPubMed
16.Tawson, V.L., Abramovich, M.G.: Polymorphism of crystals and phases size effect: Transformation diamond to graphite. Dokl. Akad. Nauk 287, 291 (1986)Google Scholar
17.Fedoseev, D.V., Deryagin, B.V., Varshavskaya, I.G., Semenova-Tyan-Shanskaya, A.S.: Diamond Crystallization (Nauka, Moscow 1984)134 Google Scholar
18.Magomedov, M.N.: About the relationship of surface energy with size and form of nanocrystals. Phys. Tverd. Tela 46, 924 (2004)Google Scholar
19.Nuth, J.A.: Small-particle physics and interstellar diamonds. Nature 329, 589 (1987)Google Scholar
20.Kawato, T., Kondo, K.: Effects of oxygen on CVD diamond synthesis. Jpn. J. Appl. Phys. 26, 1429 (1987)Google Scholar
21.Simakov, S.K.: Redox state of Earth's upper mantle peridotites under the ancient cratons and its connection with diamond genesis. Geochim. Cosmochim. Acta 62, 1811 (1998)CrossRefGoogle Scholar
22.Simakov, S.K., Dubinchuk, V.T., Novikov, M.P., Melnik, N.N.: Low-pressure-temperature, metastable nanosized diamond and diamond-like phases formation without seeds, NDNC-2008, the 2nd Annual Conference of New Diamonds and Nanocarbons (Elsevier, Taipei 2008)219 Google Scholar
23.Sommer, M., Mui, K., Smith, F.W.: Thermodynamic analysis of the chemical vapor deposition of diamond films. Solid State Commun. 69, 775 (1989)Google Scholar
24.Wang, R.B., Sommer, M., Smith, F.W.: The deposition of diamond films via the oxyacetelene torch: Experimental results and thermodynamic predictions. J. Cryst. Growth 119, 271 (1992)Google Scholar
25.Bernatowicz, T., Zinner, E.: Astrophysical implications of the laboratory study of presolar materials, Procedings of the AIP Conference (Elsevier, Woodbury, NY 1997)748 Google Scholar
26.Sellgren, K.: Aromatic hydrocarbons, diamonds, and fullerence in interstellar space: Puzzles to be solved by laboratory and theoretical astrochemistry. Spectrochim. Acta 57, 627 (2001)CrossRefGoogle Scholar
27.Nakano, H., Kouchi, A., Arakawa, M., Kimura, Y., Kaito, C., Ohno, H., Hondoh, T.: Alteration of interstellar organic materials in meteorites' parent bodies: A novel route in diamond formation. Proc. Japan Acad. Ser. B 78, 277 (2002)CrossRefGoogle Scholar
28.Kouchi, A., Nakano, H., Kimura, Y., Kaito, C.: Novel routes for diamond formation in interstellar ices and meteoritic parent bodies. Astrophys. J. 626, L129 (2005)Google Scholar
29.Daulton, T.L.: Extraterrestrial nanodiamonds in the cosmos, Ultrananocrystalline Diamond edited by O. Shenderova and D. Gruen (William-Andrew, Norwich, UK 2006)23 CrossRefGoogle Scholar
30.Rozen, O.M., Zorin, U.M., Zayachkovsky, A.A.: Diamond foundation in connection of precambrian eclogites of Kokchetave massive. Dokl. Akad. Nauk 203, 674 (1972)Google Scholar
31.Dobrzhinetskaya, L.F., Eide, E.A., Larsen, R.B., Sturt, B.A., Tronnes, R.G., Smith, D.C., Taylor, W.R., Posukhova, T.V.: Microdiamonds in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology 23, 597 (1995)2.3.CO;2>CrossRefGoogle Scholar
32.Sobolev, N.V., Shatsky, V.S.: Diamond inclusions in garnets from metamorphic rocks; A new environment for diamond formation. Nature 343, 742 (1990)CrossRefGoogle Scholar
33.Novgorodova, M.I., Rasskazov, A.V.: High-pressure carbon mineral phase formation as a result of heat explosion at shift transformation of graphite. Dokl. Akad. Nauk 322, 379 (1992)Google Scholar
34.Wirth, R., Rocholl, A.: Nanocrystalline diamonds from the Earth's mantle underneaath Hawaii. Earth Planet. Sci. Lett. 211, 357 (2003)Google Scholar
35.Pechnikov, V.A., Kaminsky, F.V.: Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. Eur. J. Mineral. 20, 395 (2008)Google Scholar
36.De Corte, K., Cartigny, P., Shatsky, V.S., De Paepe, P., Sobolev, M.V., Jovay, M.: Characteristics of microdiamond from UHPM rocks of the Kokchetav massif (Kazakhstan), Proceedings of the 7th International Kimberlite Conference edited by J.J. Gurney, L.G. Gurney, M.D. Pascoe, and S.H. Richardson (Elsevier, Cape Town 1999)174 Google Scholar