Skip to main content Accessibility help
×
Home

Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications

  • Kanchana Vydianathan (a1), Guillermo Nuesca (a1), Gregory Peterson (a1), Eric T. Eisenbraun (a1), Alain E. Kaloyeros (a1), John J. Sullivan (a2) and Bin Han (a2)...

Abstract

A chemical vapor deposition process has been developed for titanium dioxide (TiOx) for applications as capacitor dielectric in sub-quarter-micron dynamic random-access memory devices, and as gate insulators in emerging generations of etal-oxide-semiconductor transistors. Studies using the β-diketonate source precursor (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium were carried out to examine the underlying mechanisms that control film nucleation and growth kinetics and to establish the effects of key process parameters on film purity, composition, texture, morphology, and electrical properties. Resulting film properties were thoroughly analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, scanning electron microscopy (SEM), focused-ion-beam SEM, and capacitance–voltage (C–V) measurements. The study resulted in the identification of an optimized process for the deposition of an anatase–rutile TiOx film with a dielectric constant approximately 85 at 1 MHz for a 330-nm thickness, and a leakage current below 2 × 10−8 A/cm2 for bias voltage values up to 3.5 V.

Copyright

Corresponding author

a)Address all correspondence to this author.

References

Hide All
1.International Technology Roadmap for Semiconductors-1999 Edition (Semiconductor Industry Association, San Jose, CA, 1999).
2.Kotecki, D.E., Semicond. Int. 19, 109 (1996).
3.El-Kareh, B., Bronner, G.B., and Schuster, S.E., Solid State Technol. 40, 89 (1997).
4.Shinriki, H. and Nakata, M., IEEE Trans. Electron Dev. 38, 455 (1991).
5.Kim, K. and Hwang, C-G., Lee, J.G., IEEE Trans. Electron Dev. 45, 598 (1998).
6.Bohr, M.T., IEEE Trans. Electron Dev. 45, 620 (1998).
7.Zerfoss, S., Stokes, R.G., and Moore, C.H. Jr., J. Chem. Phys. 16, 1166 (1948).
8.Rausch, N. and Burte, E.P., J. Electrochem. Soc. 140, 145 (1993).
9.Fuyuki, T. and Matsunami, H., Jpn. J. Appl. Phys. 25, 1288 (1986).
10.Feuersanger, A.E., Proc. IEEE 52, 1463 (1964).
11.Campbell, S.A., Gilmer, D.C., Wang, X., Hsieh, M.T., Kim, H.S., Gladfelter, W.L., and Yan, J., IEEE Trans. Electron Dev. 44, 245 (1977).
12.Pulker, H.K., Paesold, G., and Ritter, E., Appl. Opt. 15, 2986 (1976).
13.Pulker, H.K., Appl. Opt. 18, 1969 (1979).
14.Hass, G., Vacuum 2, 331 (1952).
15.Martin, P.J., J. Mater. Sci. 21, 1 (1986).
16.Kurtz, S.R. and Gordon, R.G., Solar Energy Mater. 15, 229 (1987).
17.Lottiaux, M., Boulesteix, C., Nihoul, G., and Varnier, F., Thin Solid Films 170, 107 (1989).
18.Wicaksana, D., Kobayashi, A., and Kinbara, A., J. Vac. Sci. Technol. A10, 1479 (1992).
19.Lobl, P., Huppertz, M., and Mergel, D., Thin Solid Films 251, 72 (1994).
20.Suhail, M.H., Rao, G.M., and Mohan, S., J. Appl. Phys. 71, 1421 (1992).
21.Pongratz, S. and Zoller, A., J. Vac. Sci. Technol. A10, 1897 (1992).
22.Siefering, K.L. and Griffin, G.L., J. Electrochem. Soc. 137, 814 (1990).
23.Won, T.K., Yoon, S.G., and Kim, H.G., J. Electrochem. Soc. 139, 11 (1992).
24.Yoon, Y.S., Kang, W.N., and Yom, S.S., Thin Solid Films 238, 12 (1994).
25.Maryama, T. and Arai, S., Solar Energy Mater. Solar Cells 26, 323 (1992).
26.Fitzgibbons, E.T., Sladek, K.J., and Harting, W.H., J. Electrochem. Soc. 119, 736 (1972).
27.Ghoshtagore, R.N. and Noreika, A.J., J. Electrochem. Soc. 117, 1310 (1970).
28.Kim, T.W., Jung, M., Kim, H.J., and Park, T.H., Appl. Phys. Lett. 64, 1407 (1994).
29.Frenck, H.J., Kulisch, W., Kuhr, M., and Kassing, R., Thin Solid Films 201, 327 (1991).
30.Lee, W.G., Woo, S.I., Kim, J.C., Choi, S.H., and Oh, K.H., Thin Solid Films 237, 105 (1994).
31.Ha, H.K., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 68, 1265 (1996).
32.William, L.M. and Hess, D.W., J. Vac. Sci. Technol. A 1, 1810 (1983).
33.Battiston, G.A., Gerbasi, R., Porchia, M., and Marigo, A., Thin Solid Films 239, 186 (1994).
34.Chen, L., Piazza, T.W., Schmidt, B.E., Kelsey, J.E., Kaloyeros, A.E., Hazelton, D.W., Walker, M.S., Lou, L., Dye, R.C., Maggiore, C.J., Wilkins, D.J., and Knorr, D. B., J. Appl. Phys. 73, 7563 (1993).
35.Yamane, H., Kurosawa, H., Hirai, T., Watanabe, K., Iwasaki, H., Kobayashi, N., and Muto, Y., J. Cryst. Growth 98, 860 (1989).
36.Tsuruoka, T., Kawasaki, R., and Abe, H., Jpn. J. Appl. Phys. 28, L1800 (1989).
37.Burgess, R., Hotsenpiller, P.A.M., Anderson, T.J., and Hohman, J.L., J. Cryst. Growth 166, 763 (1996).
38.Sze, S.M., Physics of Semiconductor Devices-Second Edition (John Wiley and Sons, New York, 1981).
39.Sivaram, S., Chemical Vapor Deposition-Thermal and Plasma Deposition of Electronic Materials (Van Nostrand Reinhold, New York, 1995).
40.Wagner, C.D., Riggs, W.N., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Physical Electronics Division, 1979).
41.Nicollian, E.H. and Brews, J.R., Metal Oxide Semiconductor Phys-ics and Technology (John Wiley and Sons, New York, 1982).

Related content

Powered by UNSILO

Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications

  • Kanchana Vydianathan (a1), Guillermo Nuesca (a1), Gregory Peterson (a1), Eric T. Eisenbraun (a1), Alain E. Kaloyeros (a1), John J. Sullivan (a2) and Bin Han (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.