Skip to main content Accessibility help
×
Home

Metal-ions directed self-assembly of hybrid diblock copolymers

  • Birong Zeng (a1), Yueguang Wu (a1), Qilong Kang (a1), Ying Chang (a1), Conghui Yuan (a1), Yiting Xu (a1), Feng-Chih Chang (a2) and Lizong Dai (a3)...

Abstract

Novel hybrid diblock copolymers consisting of bidentate ligand-functionalized chains have been synthesized via click reaction and RAFT radical polymerization. The chemical structure and molecular weight of the synthesized poly(methacrylate-POSS)-block-poly(4-vinylbenzyl-2-pyridine-1H-1,2,3-triazole) (PMAPOSS-b-PVBPT) were characterized by NMR and GPC. The copolymers had been utilized to construct metal-containing polymer micelle by the metal–ligand coordination and electrostatic interaction in this study. The self-assembly behaviors of PMAPOSS-b-PVBPT in chloroform, a common solvent, under the effect of Zn(OTf)2 and HAuCl4 were investigated by TEM, DLS, and variable temperature NMR. Besides, micellization of this diblock copolymer was achieved in ethylene glycol, a selective solvent for PMAPOSS-b-PVBPT. The experimental results revealed that the incorporation of heterocyclic rings bearing nitrogen atoms in polymer side chains played an important role in the construction of metal-containing copolymer micelles. The prepared metal-containing PMAPOSS-b-PVBPT micelles had good dynamic and thermal stability due to the strong metal–ligand coordination interaction and electrostatic interaction.

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: brzeng@xmu.edu.cn
b) e-mail: lzdai@xmu.edu.cn

References

Hide All
1. Schacher, F.H., Rupar, P.A., and Manners, I.: Functional block copolymers: Nanostructured materials with emerging applications. Angew. Chem., Int. Ed. 51, 7898 (2012).
2. Huang, C.J., Shieu, F.S., Hsieh, W.P., and Chang, T.C.: Acidic hydrolysis of a poly(vinyl acetate) matrix by the catalytic effect of Ag nanoparticles and the micellization of Ag-metal-containing polymer. J. Appl. Polym. Sci. 100, 1457 (2006).
3. Wang, X.S. and McHale, R.: Metal-containing polymers: Building blocks for functional (nano)materials. Macromol. Rapid Commun. 31, 331 (2010).
4. Guillet, P., Fustin, C.A., Mugemana, C., Ott, C., Schubert, U.S., and Gohy, J.F.: Tuning block copolymer micelles by metal–ligand interactions. Soft Matter 4, 2278 (2008).
5. Reddy, K.R., Lee, K.P., and Gopalan, A.I.: Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7(9), 31173125 (2007).
6. Joubert, M. and In, M.: Tuning colloidal interactions through coordination chemistry. ChemPhysChem 9, 1010 (2008).
7. Zhou, G.C., He, J.B., and Harruna, I.I.: Self-assembly of amphiphilic tris(2,2'-bipyridine)ruthenium-cored star-shaped polymers. J. Polym. Sci., Part A: Polym. Chem. 45, 4204 (2007).
8. Owen, T. and Butler, A.: Metallosurfactants of bioinorganic interest: Coordination-induced self assembly. Coord. Chem. Rev. 255, 678 (2011).
9. Landfester, K. and Weiss, C.K.: Encapsulation by Miniemulsion Polymerization[M]//Modern Techniques for Nano-and Microreactors/-Reactions (Springer, Berlin, Heidelberg, 2010), pp. 149.
10. Gohy, J.F., Lohmeijer, B.G.G., and Schubert, U.S.: Reversible metallo-supramolecular block copolymer micelles containing a soft core. Macromol. Rapid Commun. 23, 555 (2002).
11. Hassan, M., Reddy, K.R., and Haque, E.: High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 4351 (2013).
12. Bronich, T.K., Keifer, P.A., Shlyakhtenko, L.S., and Kabanov, A.V.: Polymer micelle with cross-linked ionic core. J. Am. Chem. Soc. 127, 8236 (2005).
13. Bronstein, L.H., Sidorov, S.N., Valetsky, P.M., Hartmann, J., Colfen, H., and Antonietti, M.: Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds. Micelle characteristics and metal nanoparticle formation. Langmuir 15, 6256 (1999).
14. Liu, H., Wen, S., and Wang, J.: Preparation and characterization of carbon black‐polystyrene composite particles by high‐speed homogenization assisted suspension polymerization. J. Appl. Polym Sci. 123(6), 32553260 (2012).
15. Jochum, F.D., Brassinne, J., Fustin, C.A., and Gohy, J.F.: Metallo-supramolecular hydrogels based on copolymers bearing terpyridine side-chain ligands. Soft Matter 9, 2314 (2013).
16. Lichtenhan, J.D.: Polyhedral oligomeric silsesquioxanes: Building blocks for silsesquioxane-based polymers and hybrid materials. Comments Inorg. Chem. 17, 115 (1995).
17. Laine, R.M.: Nanobuilding blocks based on the [OSiO1.5]x (x=5 6, 8, 10) octasilsesquioxanes. J. Mater. Chem. 15, 3725 (2005).
18. Kannan, R.Y., Salacinski, H.J., Butler, P.E., and Seifalian, A.M.: Polyhedral oligomeric silsesquioxane nanocomposites: The next generation material for biomedical applications. Acc. Chem. Res. 38, 879 (2005).
19. Reddy, K.R., Lee, K.P., and Gopalan, A.I.: Organosilane modified magnetite nanoparticles/poly (aniline-co-o/m-aminobenzenesulfonic acid) composites: Synthesis and characterization. React. Funct. Polym. 67(10), 943954 (2007).
20. Joshi, M. and Butola, B.S.: Polymeric nanocomposites—Polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J. Macromol. Sci., Part C: Polym. Rev. 44, 389 (2004).
21. Paul, D.R. and Robeson, L.M.: Polymer nanotechnology: Nanocomposites. Polymer 49, 3187 (2008).
22. Kuo, S.W. and Chang, F.C.: POSS related polymer nanocomposites. Prog. Polym. Sci. 36, 1649 (2011).
23. Jiang, B.B., Tao, W., Lu, X., Liu, Y., Jin, H.B., Pang, Y., Sun, X.Y., Yan, D.Y., and Zhou, Y.F.: A POSS-based supramolecular amphiphile and its hierarchical self-assembly behaviors. Macromol. Rapid Commun. 33, 767 (2012).
24. Choi, S.H., Kim, D.H., and Raghu, A.V.: Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci., Part B: Phys. 51(1), 197207 (2012).
25. Perrier, S., Barner-Kowollik, C., Quinn, J.F., Vana, P., and Davis, T.P.: Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate. Macromolecules 35, 8300 (2002).
26. Dai, L.Z., Kang, Q.L., Zeng, B.R., Chen, L.N., Xu, Y.T., Luo, W.A., Yu, S.R., Jie, M., Yue, H.L., Chong, L., Cheng, G.R., Liu, X.Y., and He, K.B.: CN Pat, 103113505.
27. Giera, H., Huisgen, R., and Polborn, K.: Cycloadditions with cyclic seven-membered ketene imines. Eur. J. Org. Chem. 2005, 3781 (2005).
28. Deng, Y.M., Bernard, J., Alcouffe, P., Galy, J., Dai, L.Z., and Gerard, J.F.: Nanostructured hybrid polymer networks from in situ self-assembly of RAFT-synthesized POSS-based block copolymers. J. Polym. Sci., Polym. Part A: Chem. 49, 4343 (2011).
29. Yang, C.J., Deng, Y.M., Zeng, B.R., Yuan, C.H., Chen, M., Luo, W.A., Liu, J., Xu, Y.T., and Dai, L.Z.: Hybrid amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane: Synthesis, characterization, and self-assembly in solutions. J. Polym. Sci., Part A: Polym. Chem. 50, 4300 (2012).
30. Xu, Y.T., Chen, M., Xie, J.J., Li, C., Yang, C.J., Deng, Y.M., Yuan, C.H., Chang, F.C., and Dai, L.Z.: Synthesis, characterization and self-assembly of hybrid pH-sensitive block copolymer containing polyhedral oligomeric silsesquioxane (POSS). React. Funct. Polym. 73, 1646 (2013).

Keywords

Type Description Title
WORD
Supplementary materials

Zeng et al. supplementary material
Supplementary figure captions

 Word (32 KB)
32 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed