Skip to main content Accessibility help

Mesoporous K/Fe–Al–O nanofibers by electrospinning of solution precursors

  • Victor Halperin (a1), Gennady E. Shter (a1), Vadim Beilin (a1) and Gideon S. Grader (a1)


Nanometer-sized fibers are recently getting increased attention in heterogeneous catalysis due to the superior transport properties and effective dispersion they offer. A key challenge in this application is creation of nanofibers with internal open porosity that can provide larger accessible catalytic surface and easier mass transport into the fibers. The synthesis of potassium doped iron/aluminum oxides ceramic nanofibers with mesoporous structure is presented herein. Uniform fiber mats were prepared by electrospinning (ES) using two different precursors: an aqueous solution of metal nitrates and an organic solution of metal acetylacetonates. The organic precursors gave rise to a promising mesoporous structure with fibers diameter mainly in the 300–400 nm range. Precursor viscosity was used as a stability indicator and its influence on the ES process was studied. Collection efficiency of as high as 90% was achieved. The increased understanding in fiber morphological evolution can open new possibilities in heterogeneous catalysis.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Formo, E., Peng, Z., Lee, E., Lu, X., Yang, H., and Xia, Y.: Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase. J. Phys. Chem. C 112(27), 9970 (2008).
2.Formo, E., Camargo, P.H.C., Lim, B., Jiang, M., and Xia, Y.: Functionalization of ZrO2 nanofibers with Pt nanostructures: The effect of surface roughness on nucleation mechanism and morphology control. Chem. Phys. Lett. 476(1–3), 56 (2009).
3.Chuangchote, S., Jitputti, J., Sagawa, T., and Yoshikawa, S.: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1(5), 1140 (2009).
4.Zhan, S., Chen, D., Jiao, X., and Tao, C.: Long TiO2 hollow fibers with mesoporous walls: Sol−Gel combined electrospun fabrication and photocatalytic properties. J. Phys. Chem. B 110(23), 11199 (2006).
5.Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., and Kim, D.Y.: Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12), 1861 (2004).
6.Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., and Kim, D.Y.: New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth. Met. 153(1–3), 77 (2005).
7.Song, M.Y., Kim, D.K., Jo, S.M., and Kim, D.Y.: Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth. Met. 155(3), 635 (2005).
8.Onozuka, K.: Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17(4), 1026 (2006).
9.Song, M.Y., Ahn, Y.R., Jo, S.M., Kim, D.Y., and Ahn, J.: TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 87(11), 113113 (2005).
10.Zhang, W., Zhu, R., Liu, X., Liu, B., and Ramakrishna, S.: Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. Appl. Phys. Lett. 95(4), 043304 (2009).
11.Gu, Y., Chen, D., and Jiao, X.: Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J. Phys. Chem. B 109(38), 17901 (2005).
12.Zheng, W., Li, Z., Zhang, H., Wang, W., Wang, Y., and Wang, C.: Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44(6), 1432 (2009).
13.Fan, H., Zhang, T., Xu, X., and Lv, N.: Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties. Sens. Actuators, B 153(1), 83 (2011).
14.Luoh, R. and Hahn, H.T.: Electrospun nanocomposite fiber mats as gas sensors. Compos. Sci. Technol. 66(14), 2436 (2006).
15.Wang, G., Gou, X., Horvat, J., and Park, J.: Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112(39), 15220 (2008).
16.Zhang, X., Liu, H., Petnikota, S., Ramakrishna, S., and Fan, H.J.: Electrospun Fe2O3-carbon composite nanofibers as durable anode materials for lithium ion batteries. J. Mater. Chem. A. 2(28), 10835 (2014).
17.Mahapatra, A., Mishra, B.G., and Hota, G.: Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 258259, 116 (2013).
18.Chaudhari, S. and Srinivasan, M.: 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 22(43), 23049 (2012).
19.Sundaramurthy, J., Kumar, P.S., Kalaivani, M., Thavasi, V., Mhaisalkar, S.G., and Ramakrishna, S.: Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv. 2(21), 8201 (2012).
20.Shao, H., Zhang, X., Chen, F., Liu, S., Ji, Y., Zhu, Y., and Feng, Y.: Preparation of α-Fe2O3 nanotubes via electrospinning and research on their catalytic properties. Appl. Phys. A 108(4), 961 (2012).
21.Sung, Y.K., Ahn, B.W., and Kang, T.J.: Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. J. Magn. Magn. Mater. 324(6), 916 (2012).
22.Wang, S., Wang, C., Zhang, B., Sun, Z., Li, Z., Jiang, X., and Bai, X.: Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Mater. Lett. 64(1), 9 (2010).
23.Ahn, B.W. and Kang, T.J.: Preparation and characterization of magnetic nanofibers with iron oxide nanoparticles and poly(ethylene terephthalate). J. Appl. Polym. Sci. 125(2), 1567 (2012).
24.Bai, X., Zhang, J., Ning, N., Zhang, L., Nishi, T., and Tian, M.: Enhanced magnetic property of Fe3O4 nano-particles/elastomeric composite membrane by using electrospinning and in-situ crosslinking technique. J. Polym. Res. 21(5), 1 (2014).
25.Landau, M.V., Vidruk, R., and Herskowitz, M.: Sustainable production of green feed from carbon dioxide and hydrogen. ChemSusChem 7(3), 785 (2014).
26.Morales, F. and Weckhuysen, B.M.: In Promotion Effects in Co-based Fischer-Tropsch Catalysis, Vol. 19; Spivey, J.J. and Dooley, K.M. eds. (Cambridge: The Royal Society of Chemistry, 2006), pp. 140.
27.Stanger, J.J.: Effect of salts on the electrospinning of poly (vinyl alcohol). AIP Conf. Proc. 1151, 118 (2009).
28.Angammana, C.J. and Jayaram, S.H.: Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 47(3), 1109 (2011).
29.De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., and De Clerck, K.: The effect of temperature and humidity on electrospinning. J. Mater. Sci. 44(5), 1357 (2009).
30.Kalayci, V.E., Patra, P.K., Kim, Y.K., Ugbolue, S.C., and Warner, S.B.: Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers. Polymer 46(18), 7191 (2005).
31.Gevorkyan, A., Shter, G.E., Shmueli, Y., Buk, A., Meir, R., and Grader, G.S.: Branching effect and morphology control in electrospun PbZr0.52Ti0.48O3 nanofibers. J. Mater. Res. 29(16), 1721 (2014).


Mesoporous K/Fe–Al–O nanofibers by electrospinning of solution precursors

  • Victor Halperin (a1), Gennady E. Shter (a1), Vadim Beilin (a1) and Gideon S. Grader (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed