Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T22:32:16.068Z Has data issue: false hasContentIssue false

Mesoporous K/Fe–Al–O nanofibers by electrospinning of solution precursors

Published online by Cambridge University Press:  23 October 2015

Victor Halperin
Affiliation:
Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
Gennady E. Shter
Affiliation:
Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
Vadim Beilin
Affiliation:
Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
Gideon S. Grader*
Affiliation:
Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
*
a)Address all correspondence to this author. e-mail: grader@technion.ac.il
Get access

Abstract

Nanometer-sized fibers are recently getting increased attention in heterogeneous catalysis due to the superior transport properties and effective dispersion they offer. A key challenge in this application is creation of nanofibers with internal open porosity that can provide larger accessible catalytic surface and easier mass transport into the fibers. The synthesis of potassium doped iron/aluminum oxides ceramic nanofibers with mesoporous structure is presented herein. Uniform fiber mats were prepared by electrospinning (ES) using two different precursors: an aqueous solution of metal nitrates and an organic solution of metal acetylacetonates. The organic precursors gave rise to a promising mesoporous structure with fibers diameter mainly in the 300–400 nm range. Precursor viscosity was used as a stability indicator and its influence on the ES process was studied. Collection efficiency of as high as 90% was achieved. The increased understanding in fiber morphological evolution can open new possibilities in heterogeneous catalysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Formo, E., Peng, Z., Lee, E., Lu, X., Yang, H., and Xia, Y.: Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase. J. Phys. Chem. C 112(27), 9970 (2008).CrossRefGoogle Scholar
Formo, E., Camargo, P.H.C., Lim, B., Jiang, M., and Xia, Y.: Functionalization of ZrO2 nanofibers with Pt nanostructures: The effect of surface roughness on nucleation mechanism and morphology control. Chem. Phys. Lett. 476(1–3), 56 (2009).Google Scholar
Chuangchote, S., Jitputti, J., Sagawa, T., and Yoshikawa, S.: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1(5), 1140 (2009).CrossRefGoogle ScholarPubMed
Zhan, S., Chen, D., Jiao, X., and Tao, C.: Long TiO2 hollow fibers with mesoporous walls: Sol−Gel combined electrospun fabrication and photocatalytic properties. J. Phys. Chem. B 110(23), 11199 (2006).CrossRefGoogle ScholarPubMed
Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., and Kim, D.Y.: Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12), 1861 (2004).Google Scholar
Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., and Kim, D.Y.: New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth. Met. 153(1–3), 77 (2005).Google Scholar
Song, M.Y., Kim, D.K., Jo, S.M., and Kim, D.Y.: Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth. Met. 155(3), 635 (2005).CrossRefGoogle Scholar
Onozuka, K.: Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17(4), 1026 (2006).Google Scholar
Song, M.Y., Ahn, Y.R., Jo, S.M., Kim, D.Y., and Ahn, J.: TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 87(11), 113113 (2005).Google Scholar
Zhang, W., Zhu, R., Liu, X., Liu, B., and Ramakrishna, S.: Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. Appl. Phys. Lett. 95(4), 043304 (2009).CrossRefGoogle Scholar
Gu, Y., Chen, D., and Jiao, X.: Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J. Phys. Chem. B 109(38), 17901 (2005).CrossRefGoogle ScholarPubMed
Zheng, W., Li, Z., Zhang, H., Wang, W., Wang, Y., and Wang, C.: Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44(6), 1432 (2009).CrossRefGoogle Scholar
Fan, H., Zhang, T., Xu, X., and Lv, N.: Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties. Sens. Actuators, B 153(1), 83 (2011).Google Scholar
Luoh, R. and Hahn, H.T.: Electrospun nanocomposite fiber mats as gas sensors. Compos. Sci. Technol. 66(14), 2436 (2006).Google Scholar
Wang, G., Gou, X., Horvat, J., and Park, J.: Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112(39), 15220 (2008).Google Scholar
Zhang, X., Liu, H., Petnikota, S., Ramakrishna, S., and Fan, H.J.: Electrospun Fe2O3-carbon composite nanofibers as durable anode materials for lithium ion batteries. J. Mater. Chem. A. 2(28), 10835 (2014).CrossRefGoogle Scholar
Mahapatra, A., Mishra, B.G., and Hota, G.: Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 258259, 116 (2013).Google Scholar
Chaudhari, S. and Srinivasan, M.: 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 22(43), 23049 (2012).Google Scholar
Sundaramurthy, J., Kumar, P.S., Kalaivani, M., Thavasi, V., Mhaisalkar, S.G., and Ramakrishna, S.: Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv. 2(21), 8201 (2012).Google Scholar
Shao, H., Zhang, X., Chen, F., Liu, S., Ji, Y., Zhu, Y., and Feng, Y.: Preparation of α-Fe2O3 nanotubes via electrospinning and research on their catalytic properties. Appl. Phys. A 108(4), 961 (2012).Google Scholar
Sung, Y.K., Ahn, B.W., and Kang, T.J.: Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. J. Magn. Magn. Mater. 324(6), 916 (2012).Google Scholar
Wang, S., Wang, C., Zhang, B., Sun, Z., Li, Z., Jiang, X., and Bai, X.: Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Mater. Lett. 64(1), 9 (2010).CrossRefGoogle Scholar
Ahn, B.W. and Kang, T.J.: Preparation and characterization of magnetic nanofibers with iron oxide nanoparticles and poly(ethylene terephthalate). J. Appl. Polym. Sci. 125(2), 1567 (2012).CrossRefGoogle Scholar
Bai, X., Zhang, J., Ning, N., Zhang, L., Nishi, T., and Tian, M.: Enhanced magnetic property of Fe3O4 nano-particles/elastomeric composite membrane by using electrospinning and in-situ crosslinking technique. J. Polym. Res. 21(5), 1 (2014).Google Scholar
Landau, M.V., Vidruk, R., and Herskowitz, M.: Sustainable production of green feed from carbon dioxide and hydrogen. ChemSusChem 7(3), 785 (2014).Google Scholar
Morales, F. and Weckhuysen, B.M.: In Promotion Effects in Co-based Fischer-Tropsch Catalysis, Vol. 19; Spivey, J.J. and Dooley, K.M. eds. (Cambridge: The Royal Society of Chemistry, 2006), pp. 140.Google Scholar
Stanger, J.J.: Effect of salts on the electrospinning of poly (vinyl alcohol). AIP Conf. Proc. 1151, 118 (2009).Google Scholar
Angammana, C.J. and Jayaram, S.H.: Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 47(3), 1109 (2011).Google Scholar
De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., and De Clerck, K.: The effect of temperature and humidity on electrospinning. J. Mater. Sci. 44(5), 1357 (2009).Google Scholar
Kalayci, V.E., Patra, P.K., Kim, Y.K., Ugbolue, S.C., and Warner, S.B.: Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers. Polymer 46(18), 7191 (2005).CrossRefGoogle Scholar
Gevorkyan, A., Shter, G.E., Shmueli, Y., Buk, A., Meir, R., and Grader, G.S.: Branching effect and morphology control in electrospun PbZr0.52Ti0.48O3 nanofibers. J. Mater. Res. 29(16), 1721 (2014).CrossRefGoogle Scholar