Skip to main content Accessibility help
×
Home

Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique

  • Takeshi Inada (a1), Naoki Uno (a1), Takeharu Kato (a1) and Yuji Iwamoto (a1)

Abstract

A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore formation rate at 1 V of the pulse sequential voltage was determined to be the optimum pulse frequency for the anodization. Transmission electron microscopy observation and N2 sorption analysis revealed that controlling the minimum pore channel diameter at 3 nm was possible by the voltage of 1 V. The gas permeance according to Knudsen’s diffusion mechanism was demonstrated at 500 °C, by evaluating gas permeation properties through the meso-porous anodic alumina capillary tube with radial meso-pore channels with minimum diameter of 3 nm, achieving hydrogen permeance of 1.8 × 10−6 mol/m2 s Pa.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: inada@jfcc.or.jp

References

Hide All
1Gavalas, G.R., Megris, C.E. and Nam, S.W.: Deposition of H2-permselective SiO2 films. Chem. Eng. Sci. 44, 1829 (1989).
2Kitao, S., Kameda, H. and Asaeda, M.: Gas separation by thin porous silica membrane of ultra fine pores at high temperature. Membrane 15, 222 (1990).
3Tsapatsis, M. and Gavalas, G.R.: Structure and aging characteristics of H2-permselective SiO2-Vycor membranes. J. Membr. Sci. 87, 281 (1994).
4Yan, S., Maeda, H., Kusakabe, K., Morooka, S. and Akiyama, Y.: Hydrogen-permselective SiO2 membrane formed in pores of alumina support tube by chemical vapor deposition with tetraethyl orthosilicate. Ind. Eng. Chem. Res. 33, 2096 (1994).
5Wu, J.C.S., Sabol, H., Smith, G.W., Flowers, D.L. and Liu, P.K.T.: Characterization of hydrogen-permselective microporous ceramic membranes. J. Membr. Sci. 96, 275 (1994).
6Yoshida, K., Hirano, Y., Fujii, H., Tsuru, T. and Asaeda, M.: Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. J. Chem. Eng. of Jpn. 34, 523 (2001).
7Raman, N.K. and Brinker, C.J.: Organic “template” approach to molecular sieving silica membranes. J. Membr. Sci. 105, 273 (1995).
8Sea, B-K., Kusakabe, K. and Morooka, S.: Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall. J. Membr. Sci. 130, 41 (1997).
9Nair, B.N., Yamaguchi, T., Okubo, T., Suematsu, H., Keizer, K. and Nakao, S.: Sol-gel synthesis of molecular sieving silica membranes. J. Membr. Sci. 135, 237 (1997).
10de Vos, R.M. and Verweij, H.: Improved performance of silica membranes for gas separation. J. Membr. Sci. 143, 37 (1998).
11Nijmeijer, A., Bladergroen, B.J. and Verweij, H.: Low-temperature CVI modification of γ-alumina membranes. Microporous Mesoporous Mater. 25, 179 (1998).
12de Vos, R.M., Maier, W.F. and Verweij, H.: Hydrophobic silica membranes for gas separation. J. Membr. Sci. 158, 277 (1999).
13Hwang, G-J., Onuki, K., Shimizu, S. and Ohya, H.: Hydrogen separation in H2-H2O-HI gaseous mixture using the silica membrane prepared by chemical vapor deposition. J. Membr. Sci. 162, 83 (1999).
14Kusakabe, K., Shibao, F., Zhao, G., Sotowa, K-I., Watanabe, K. and Saito, T.: Surface modification of silica membranes in tublar-type module. J. Membr. Sci. 215, 321 (2003).
15Kurungot, S., Yamaguchi, T. and Nakao, S.: Rh/γ-Al2O3 catalytic layer integrated with sol-gel synthesized microporous silica membrane for compact membrane reactor applications. Catal. Lett. 86, 273 (2003).
16Keller, F., Hunter, M.S. and Robinson, D.L.: Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411 (1953).
17O’Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London A 317, 511 (1970).
18Wood, G.C. and O’Sullivan, J.P.: The anodizing of aluminium in sulphate solutions. Electrochim. Acta 15, 1865 (1970).
19Ebihara, K., Takahashi, H. and Nagayama, M.: Structure and density of anodic oxide films formed on aluminum in sulfuric acid solutions. J. Surf. Finish. Soc. Jpn. 42, 156 (1982).
20Ono, S., Takeda, K. and Masuko, N.: Cell dimension of porous anodic alumina films. ATB Metall. 40/41, 398 2000-2001.
21Dell’Oca, C.J. and Fleming, P.J.: Initial stage of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487 (1976).
22Nagayama, M. and Tamura, K.: Dissolution of the anodic oxide film on aluminium in a sulphuric acid solution. Electrochim. Acta 12, 1097 (1967).
23Inada, T. and Fukui, T.: Development of anodic alumina membrane with sub-nanometers pore size, in Progress in Membrane Science and Technology , edited by Kemperman, A.J.B. and Koops, G.H. (Abstracts of Euromembrane 97, Twente, The Netherlands, 1997) p. 257.
24Inada, T., Fukui, T. and Yanagida, H.: Development of anodic alumina membrane with sub-nanometers pore size by using pulse voltage, in Inorganic Membranes, edited by Nakao, S. (Proceedings of the 5th International Conference on Inorganic Membranes, Nagoya, Japan, 1998) p. 148.
25Itaya, K., Sugawara, S., Arai, K. and Saito, S.: Properties of porous anodic aluminum oxide films as membranes. J. Chem. Eng. Jpn. 17, 514 (1984).
26Diggle, J.W., Downie, T.C. and Goulding, C.W.: Anodic oxide films on aluminum. Chem. Rev. 69, 365 (1969).
27Barrer, R.M.: Permeation, diffusion and solution of gases in organic polymers. Trans. Farada Soc. 35, 628 (1934).
28Guo, X.P., Imaizumi, H. and Katoh, K.: The behaviour of passive films on carbon steel in sulfuric acid solutions. J. Electroanal. Chem. 383, 99 (1994).
29de Wit, H.J., Wijenberg, C. and Crevecoeur, C.: Impedance measurements during anodization of aluminum. J. Electrochem. Soc. 126, 779 (1979).
30Takahashi, H., Nagayama, M., Akahori, H. and Kitahara, A.: Electron-microscopy of porous anodic oxide films on aluminium by ultra-thin sectioning technique Part 1. The structural change of the film during the current recovery period. J. Electronmicroscopy 22, 149 (1973).
31Knudsen, M.: The law of the molecular flow and viscosity of gases moving through tubes. Ann. Phys. 28, 75 (1909).
32Tamon, H., Kyotani, S., Wada, H., Okazaki, M. and Toei, R.: Surface flow phenomenon of adsorbed gases on activated alumina. J. Chem. Eng. Jpn. 14, 136 (1981).
33Okubo, T., Watanabe, M., Kusakabe, K. and Morooka, S.: Preparation of γ-alumina thin membrane by sol-gel processing and its characterization by gas permeation. J. Membr. Sci. 25, 4822 (1990).

Keywords

Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique

  • Takeshi Inada (a1), Naoki Uno (a1), Takeharu Kato (a1) and Yuji Iwamoto (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed