Skip to main content Accessibility help
×
Home

Mechanisms for microstructure enhancement in flux-assisted growth of barium titanate on sapphire

  • Matthew J. Burch (a1), Jing Li (a1), David T. Harris (a1), Jon-Paul Maria (a1) and Elizabeth C. Dickey (a1)...

Abstract

A low-temperature thin-film processing method for BaTiO3 is studied to understand microstructure development in the presence of a liquid-forming phase. The addition of a eutectic barium borate flux is found to prevent nucleation of BaTiO3 during pulsed-laser deposition on sapphire substrates at 400 °C. Subsequent thermal annealing above the flux's eutectic temperature dramatically enhances the film's microstructural development and crystallinity. A secondary reaction phase of barium aluminate is identified at the substrate interface in both unfluxed and fluxed films, although it is more pronounced in the fluxed films. This barium aluminate phase in conjunction with the liquid flux serves to nucleate {111} twins in the barium titanate, which subsequently lead to enhanced grain growth. The resulting large-grained and dense thin films result in markedly improved dielectric properties.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: mjburch@ncsu.edu

References

Hide All
1.Tagantsev, K., Sherman, V.O., Astafiev, K.F., Venkatesh, J., and Setter, N.: Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5 (2003).
2.Kong, L., Li, S., Zhang, T., Zhai, J., Boey, F., and Ma, J.: Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 55, 840 (2010).
3.Zhang, Q., Zhai, J., Ben, Q., Yu, X., and Yao, X.: Enhanced microwave dielectric properties of Ba0.4Sr0.6TiO3 ceramics doping by metal Fe powders. J. Appl. Phys. 112, 104104 (2012).
4.Courreges, S., Zhao, Z., Choi, K., Hunt, A., and Papapolymerou, J.: Electronically tunable ferroelectric devices for microwave applications. In Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications, Minin, I. ed. (InTech, Rijeka, Croatia, 2010).
5.Aygün, S.M., Ihlefeld, J.F., Borland, W.J., and Maria, J.P.: Permittivity Scaling in Ba1-xSrxTiO3 thin films and ceramics. J. Appl. Phys. 109, 0034108 (2011).
6.Chong, K.B., Kong, L.B., Chen, L., Yan, L., Tan, C.Y., Yang, T., Ong, C.K., and Osipowicz, T.: Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices. J. Appl. Phys. 95, 1416 (2004).
7.Zhang, W.J., Dai, J.M., Zhu, X.B., Chang, Q., Liu, Q.C., and Sun, Y.P.: Improvement of dielectric tunability and loss tangent of (Ba,Sr)TiO3 thin films with K doping. Chin. Phys. B 21, 097702 (2012).
8.Yan, X., Ren, W., Shi, P., Wu, X., and Yao, X.: Enhanced tunable dielectric properties of Ba0.5Sr0.5TiO3/Bi1.5Zn1.0Nb1.5O7 multilayer thin films by a sol-gel process. Thin Solid Films 520, 789 (2011).
9.Korn, D.S. and Wu, H.D.: A comprehensive review of microwave system requirements on thin-film ferroelectrics. Integr. Ferroelectr. 24, 215 (1999).
10.Ihlefeld, J.F., Borland, W.J., and Maria, J-P.: Enhanced dielectric and crystalline properties in ferroelectric barium titanate thin films. Adv. Funct. Mater. 17, 1199 (2007).
11.Harris, D.T., Burch, M.J., Ihlefeld, J.F., Lam, P.G., Li, J., Dickey, E.C., and Maria, J-P.: Realizing strain enhanced dielectric properties in BaTiO3 films by liquid phase assisted growth. Appl. Phys. Lett. 103, 012904 (2013).
12.Prakash, D., Sharma, B.P., Mohan, T.R.R., and Gopalan, P.: Flux additions in barium titanate: overview and prospects. J. Solid State Chem. 155, 86 (2000).
13.Qi, J.Q., Chen, W.P., Wang, Y., Chan, H.L.W., and Li, L.T.: Dielectric properties of barium titanate ceramics doped by B2O3 vapor. J. Appl. Phys. 96, 6937 (2004).
14.Toropov, N.A. and Galakhov, F.Y.: Diagram of the state of the BaO-Al2O3 system. Rep. USSR Academy Sci. 82, 6970 (1952).
15.Madakson, P., Cuomo, J.J., Yee, D.S., Roy, R.A., and Scilla, G.: Processing of La1.8Sr0.2CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering. J. Appl. Phys. 63, 2046 (1988).
16.Develos, K.D., Yamasaki, H., Sawa, A., and Nakagawa, Y.: On the origin of surface outgrowths in pulsed-laser-deposited YBCO/CeO2/Al2O3 thin films. Physica C: Superconductivity 361, 121 (2001).
17.Develos, K.D., Yamasaki, H., Nakagawa, Y., and Sawa, A.: Effect of laser fluence on outgrowth formation and interfacial reaction in YBCO/CeO2/Al2O3 films. Physica C: Superconductivity 372, 642 (2002).
18.Dovidenko, K., Oktyabrsky, S., Tokarchuk, D., Michaltsov, A., and Ivanov, A.: The influence of the native BaAl2O4 boundary layer on microstructure and properties of YBa2Cu3O7-x thin films grown on sapphire. Mater. Sci. Eng., B 15, 25 (1992).
19.Podraza, N.J., Li, J., Wronski, C.R., Dickey, E.C., Horn, M.W., and Collins, R.W.: Analysis of Si1-xGex :H thin films with graded composition and structure by real time spectroscopic ellipsometry. Physica Status Solidi A 205, 892 (2008).
20.Podraza, N.J., John, D.B.S., Li, J., Wronski, C.R., Dickey, E.C., and Collins, R.W.: Microstructural evolution in Si1-xGex:H thin films for photovoltaic applications. Photovoltaic Specialists Conference (PVSC) 35, 000158 (2010).
21.Collins, R.W., Ferlauto, A.S., Ferreira, G.M., Chen, C., Koh, J., Koval, R.J., Lee, Y., Pearce, J.M., and Wronski, C.R.: Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry. Sol. Energy Mater. Sol. Cells 78, 143 (2003).
22.DeVRIES, R.C.: Observations on growth of BaTiO3 crystals from KF solutions. J. Amer. Ceram. Soc. 42, 547 (1959).
23.Lee, B-K. and Kang, S-J.L.L.: Second-phase assisted formation of {111} twins in barium titanate. Acta Mater. 49, 1373 (2001).
24.Lee, S., Randall, C., and Liu, Z-K.: Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 2589 (2007).
25.Hu, K.A., Hiremath, B.V., and Newnham, R.E.: Twin-seeded BaTiO3 ceramics. Phase Transitions 6, 153 (1986).
26.Kang, S.J.L.: Boundary structure-dependent grain growth behavior in polycrystals: model and principle. Mater. Sci. Forum 753, 377 (2013).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed