Skip to main content Accessibility help

Mechanism of vertical Ge nanowire nucleation on Si (111) during subeutectic annealing and growth

  • Se Jun Park (a1), Sung Hwan Chung (a2), Bong-Joong Kim (a3), Minghao Qi (a4), Xianfan Xu (a5), Eric A. Stach (a6) and Chen Yang (a7)...


The direct integration of Ge nanowires with silicon is of interest in multiple applications. In this work, we describe the growth of high-quality, vertically oriented Ge nanowires on Si (111) substrates utilizing a completely sub-Au–Si-eutectic annealing and growth procedure. With all other conditions remaining identical, annealing below the Au–Si eutectic results in successful heteroepitaxial nucleation and growth of Ge nanowires on Si substrate while annealing above the Au–Si eutectic leads to randomly oriented growth. A model is presented to elucidate the effect of the annealing temperature, in which we hypothesized that sub-Au–Si-eutectic annealing leads to the formation of a single and well-oriented interface, essential to template heteroepitaxial nucleation. These results are critically dependent on substrate preparation and lead to the creation of integrated nanowire systems with a low thermal budget process.


Corresponding author

c)Address all correspondence to this author. e-mail:


Hide All
1.Li, Y., Qian, F., Xiang, J., and Lieber, C.M.: Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006).
2.Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
3.Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J-K., Goddard, W.A., and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).
4.Peng, K-Q and Lee, S-T: Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 23, 198 (2011).
5.Patolsky, F., Zheng, G., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260 (2006).
6.Wang, D., Wang, Q., Javey, A., Tu, R., Dai, H., Kim, H., McIntyre, P.C., Krishnamohan, T., and Saraswat, K.C.: Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432 (2003).
7.Greytak, A.B., Lauhon, L.J., Gudiksen, M.S., and Lieber, C.M.: Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176 (2004).
8.Kodambaka, S., Tersoff, J., Reuter, M.C., and Ross, F.M.: Germanium nanowire growth below the eutectic temperature. Science 316, 729 (2007).
9.Adhikari, H., McIntyre, P.C., Marshall, A.F., and Chidsey, C.E.D.: Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism. J. Appl. Phys. 102, 094311 (2007).
10.Gamalski, A.D., Tersoff, J., Sharma, R., Ducatiand, C., and Hofmann, S.: Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 10, 2972 (2010).
11.McIntyre, P.C., Adhikari, H., Goldthorpe, I.A., Hu, S., Leu, P.W., Marshall, A.F., and Chidsey, C.E.D.: Group IV semiconductor nanowire arrays: Epitaxy in different contexts. Semicond. Sci. Technol. 25, 024016 (2010).
12.Kamins, T.I., Li, X., Willians, R.S., and Liu, X.: Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503 (2004).
13.Dailey, J.W., Taraci, J., Clement, T., Smith, D.J., Drucker, J., and Picraux, S.T.: Vapor-liquid-solid growth of germanium nanostructures on silicon. J. Appl. Phys. 96, 7556 (2004).
14.Jagannathan, H., Deal, M., Nishi, Y., Woodruff, J., Chidsey, C., and McIntyre, P.C.: Nature of germanium nanowire heteroepitaxy on silicon substrates. J. Appl. Phys. 100, 024318 (2006).
15.Woodruff, J.H., Ratchford, J.B., Goldthorpe, I.A., McIntyre, P.C., and Chidsey, C.E.D.: Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett. 7, 1637 (2007).
16.Manandhar, P., Akhadov, E.A., Tracy, C., and Picraux, S.T.: Integration of nanowire devices in out-of-plane geometry. Nano Lett. 10, 2126 (2010).
17.Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K.: Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56, 656 (1990).
18.Ferralis, N., Maboudian, R., and Carraro, C.: Temperature-Induced self-pinning and nanolayering of AuSi eutectic droplets. J. Am. Chem. Soc. 130, 2681 (2008).
19.Krishnamachari, U., Borgstrom, M., Ohlsson, B.J., Panev, N., Samuelson, L., Seifert, W., Larsson, M.W., and Wallenberg, L.R.: Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett. 85, 2077 (2004).
20.Islam, M.S., Sharma, S., Kamins, T.I., and Williams, R.S.: Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces. Nanotechnology 15, L5 (2004).
21.He, R., Gao, D., Fan, R., Hochbaum, A.I., Carraro, C., Maboudian, R., and Yang, P.: Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 17, 2098 (2005).


Related content

Powered by UNSILO
Type Description Title
Supplementary Figure

Park Supplementary Figure
Figure S1: SEM images of Ge nanowires grown on the SiO2 surface, with annealing at 320 °C (a) and 400 °C (b). SEM images were taken with a 25° inclination from the plan-view (in a, b and c) and in cross-sectional view (insets to a, b and c). All scale bars are 1 μm.

 PDF (62 KB)
62 KB

Mechanism of vertical Ge nanowire nucleation on Si (111) during subeutectic annealing and growth

  • Se Jun Park (a1), Sung Hwan Chung (a2), Bong-Joong Kim (a3), Minghao Qi (a4), Xianfan Xu (a5), Eric A. Stach (a6) and Chen Yang (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.