Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T21:56:12.901Z Has data issue: false hasContentIssue false

Mechanism of diamond film growth by hot-filament CVD: Carbon-13 studies

Published online by Cambridge University Press:  31 January 2011

C. Judith Chu
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77251-1892
Mark P. D'Evelyn
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77251-1892
Robert H. Hauge
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77251-1892
John L. Margrave
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77251-1892
Get access

Abstract

Mixed carbon-12/carbon-13 diamond films were synthesized by hot-filament chemical vapor deposition, using mixtures of 13CH4 and 12CH4 or 12C2H2 in H2. The first-order Raman peak at 1332 cm−1 for 12C-diamond was found to shift by 50 cm−1 to 1282 cm−1 for pure 13C-diamond. For mixed-isotope films, the Raman peak frequency shifts linearly between these values as a function of the 13C mole fraction. The mechanism of diamond film growth by hot-filament CVD has been investigated by growth from mixtures of 13CH4 and 12C2H2, using the shifted Raman frequency to determine the relative incorporation rates of 13C and 12C into the film. The 13C mole fraction in the film agrees closely with the 13C mole fraction inferred for the methyl radical but differs substantially from that of acetylene, indicating that the methyl radical is the dominant growth precursor under the conditions studied.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1DeVries, R.C., Ann. Rev. Mater. Sci. 17, 161 (1987).CrossRefGoogle Scholar
2Badzian, A. R. and De, R. C.Vries, Mater. Res. Bull. XXIII, 385 (1988).CrossRefGoogle Scholar
3Angus, J.C. and Hayman, C.C., Science 241, 913 (1988).CrossRefGoogle Scholar
4Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
5Tsuda, M., Nakajima, M., and Oikawa, S., Jpn. J. Appl. Phys. 26, L527 (1987).CrossRefGoogle Scholar
6Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
7Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
8Kawato, T. and Kondo, K., Jpn. J. Appl. Phys. 26, 1429 (1987).CrossRefGoogle Scholar
9Celii, F. G., Pehrsson, P. E., Wang, H.T., and Butler, J. E., Appl. Phys. Lett. 52, 2043 (1988).CrossRefGoogle Scholar
10Celii, F. G. and Butler, J. E., Appl. Phys. Lett. 54, 1031 (1989).CrossRefGoogle Scholar
11Butler, J.E., Celii, F.G., Oakes, D. B., Hanssen, L.M., Carrington, W.A., and Snail, K. A., “Studies of Diamond Chemical Vapor Deposition,” High Temperature Science (in press).Google Scholar
12Harris, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
13Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
14Harris, S.J., Belton, D. N., Weiner, A.M., and Schmeig, S. J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar
15Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
16Toyoda, M., Kojima, H., and Sugai, H., Appl. Phys. Lett. 54, 1507 (1989).CrossRefGoogle Scholar
17Vakil, H. B., Banholzer, W. F., Kehl, R. J., and Spiro, C. L., Mater. Res. Bull. XXIV, 733 (1989).CrossRefGoogle Scholar
18Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65, 3448 (1989).CrossRefGoogle Scholar
19Martin, L.R. and Hill, M.W., ‘A Flowtube Study of Diamond Film Growth: Methane versus Acetylene,” J. Mater. Sci. Lett. (in press).Google Scholar
20Frenklach, M., J. Appl. Phys. 65, 5142 (1989).CrossRefGoogle Scholar
21Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
22Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
23Angus, J. C., Will, H. A., and Stanko, W. S., J. Appl. Phys. 39, 2915 (1968).CrossRefGoogle Scholar
24Harris, S. J., J. Appl. Phys. 65, 3044 (1989).CrossRefGoogle Scholar
25Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
26Chrenko, R. M., J. Appl. Phys. 63, 5873 (1988).CrossRefGoogle Scholar
27Hauge, R. H., Fredin, L., Kafafi, Z. H., and Margrave, J. L., Appl. Spectroscopy 40, 588 (1986).CrossRefGoogle Scholar
28Kim, K. and King, W.T., J. Molec. Struct. 57, 201 (1979).CrossRefGoogle Scholar
29Saëki, S., Mizuno, M., and Kondo, S., Spectrochim. Acta 32A, 403 (1976).CrossRefGoogle Scholar
30Nakanaga, T., Kondo, S., and Saëki, S., J. Chem. Phys. 70, 2471 (1979).CrossRefGoogle Scholar
31Warnatz, J., in Combustion Chemistry, edited by Gardiner, W. C. Jr., (Springer-Verlag, New York, 1984), p. 197.CrossRefGoogle Scholar
32Solin, S. A. and Ramdas, A. K., Phys. Rev. B 1, 1687 (1970).CrossRefGoogle Scholar
33Washington, M.A. and Cummins, H. Z., Phys. Rev. B 15, 5840 (1977).CrossRefGoogle Scholar
34 Preliminary results from this work were first presented at the SDIO/IST Diamond Technology Initiative Symposium held in Washington, DC in July 1989.Google Scholar
35Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, L519 (1986).CrossRefGoogle Scholar