Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-21T02:29:37.972Z Has data issue: false hasContentIssue false

Mechanical properties of wood-derived silicon carbide aluminum-alloy composites as a function of temperature

Published online by Cambridge University Press:  31 January 2011

T.E. Wilkes
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
J.Y. Pastor
Affiliation:
Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain
J. Llorca
Affiliation:
Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain; and Instituto Madrileño de Estudios Avanzados en Materiales (IMDEA-Materiales) E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain
K.T. Faber*
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
*
a)Address all correspondence to this author. e-mail: k-faber@northwestern.edu
Get access

Abstract

The mechanical behavior [i.e., stiffness, strength, and toughness (KIC)] of SiC Al–Si–Mg metal–ceramic composites (50:50 by volume) was studied at temperatures ranging from 25 to 500 °C. The SiC phase was derived from wood precursors, which resulted in an interconnected anisotropic ceramic that constrained the pressure melt-infiltrated aluminum alloy. The composites were made using SiC derived from two woods (sapele and beech) and were studied in three orthogonal orientations. The mechanical properties and corresponding deformation micromechanisms were different in the longitudinal (LO) and transverse directions, but the influence of the precursor wood was small. The LO behavior was controlled by the rigid SiC preform and the load transfer from the metal to the ceramic. Moduli in this orientation were lower than the Halpin–Tsai predictions due to the nonlinear and nonparallel nature of the Al-filled pores. The LO KIC agreed with the Ashby model for the KIC contribution of ductile inclusions in a brittle ceramic.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1de Arellano-López, A.R., Martinez-Fernandez, J., Gonzalez, P., Dominguez, C., Fernandez-Quero, V.Singh, M.: Biomorphic SiC: A new engineering ceramic material. Int. J. Appl. Ceram. Technol. 1, 56 2004Google Scholar
2Martinez-Fernandez, J., Valera-Feria, F.M.Singh, M.: High temperature compressive mechanical behavior of biomorphic silicon carbide ceramics. Scripta Mater. 43, 813 2000CrossRefGoogle Scholar
3Presas, M., Pastor, J.Y., Llorca, J., de Arellano-López, A.R., Martinez-Fernandez, J.Sepulveda, R.E.: Mechanical behavior of biomorphic Si/SiC porous composites. Scripta Mater. 53, 1175 2005CrossRefGoogle Scholar
4Singh, M.Salem, J.A.: Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors. J. Eur. Ceram. Soc. 22, 2709 2002Google Scholar
5Singh, M.Yee, B.M.: Reactive processing of environmentally conscious, biomorphic ceramics from natural wood precursors. J. Eur. Ceram. Soc. 24, 209 2004Google Scholar
6Varela-Feria, F.M., Martinez-Fernandez, J., de Arellano-Lopez, A.R., Singh, M.: Low density biomorphic silicon carbide: Microstructure and mechanical properties. J. Eur. Ceram. Soc. 22, 2719 2002Google Scholar
7Herzog, A., Vogt, U.F., Siegmann, S.Beffort, O.: Aluminium metal matrix composites based on biomorphic silicon carbide. Adv. Eng. Mater. 8, 980 2006CrossRefGoogle Scholar
8Wilkes, T.E., Young, M.L., Sepulveda, R.E., Dunand, D.C.Faber, K.T.: Composites by aluminum infiltration of porous silicon carbide derived from wood precursors. Scripta Mater. 55, 1083 2006Google Scholar
9Zollfrank, C., Travitzky, N., Sieber, H., Selchert, T.Greil, P.: Biomorphous SiSiC/Al-Si ceramic composites manufactured by squeeze casting: Microstructure and mechanical properties. Adv. Eng. Mater. 7, 743 2005Google Scholar
10Dinwoodie, J.M.: Wood: Nature’s Cellular, Polymeric, Fibre-Composite Institute of Metals London, Brookfield, VT 1989Google Scholar
11Gibson, L.J.Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed.Cambridge University Press Cambridge, UK, New York 1997CrossRefGoogle Scholar
12Kaul, V.S., Faber, K.T., Sepulveda, R., de Arellano-López, A.R.Martinez-Fernandez, J.: Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Mater. Sci. Eng., A 428, 225 2006Google Scholar
13Pappacena, K.E., Faber, K.T., Wang, H.Porter, W.D.: Thermal conductivity of porous silicon carbide derived from wood precursors. J. Am. Ceram. Soc. 90, 2855 2007CrossRefGoogle Scholar
14Mortensen, A., Michaud, V.J.Flemings, M.C.: Pressure-infiltration processing of reinforced aluminum. JOM J. Miner. Met. Mater. Soc. 45, 36 1993CrossRefGoogle Scholar
15Ferro, A.C.Derby, B.: Wetting behavior in the Al-Si/SiC system: Interface reactions and solubility effects. Acta Metall. Mater. 43, 3061 1995Google Scholar
16Pech-Canul, M.I., Katz, R.N.Makhlouf, M.M.: Optimum parameters for wetting silicon carbide by aluminum alloys. Metall. Mater. Trans. A 31, 565 2000CrossRefGoogle Scholar
17Flinn, B.D., Lo, C.S., Zok, F.W.Evans, A.G.: Fracture-resistance characteristics of a metal-toughened ceramic. J. Am. Ceram. Soc. 76, 369 1993Google Scholar
18Sigl, L.S., Mataga, P.A., Dalgleish, B.J., McMeeking, R.M.Evans, A.G.: On the toughness of brittle materials reinforced with a ductile phase. Acta Metall. 36, 945 1988Google Scholar
19Ashby, M.F., Blunt, F.J.Bannister, M.: Flow characteristics of highly constrained metal wires. Acta Metall. 37, 1847 1989CrossRefGoogle Scholar
20Dève, H.E.Schmauder, S.: Role of interface properties on the toughness of brittle matrix composites reinforced with ductile fibers. J. Mater. Res. 7, 3132 1992CrossRefGoogle Scholar
21Chawla, K.K.: Composite Materials: Science and Engineering 2nd ed.Springer New York 1998CrossRefGoogle Scholar
22Blucher, J.T.: Discussion of a liquid-metal pressure infiltration process to produce metal matrix composites. J. Mater. Process. Technol. 30, 381 1992Google Scholar
23ASTM C373-88 Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products ASTM International West Conshohocken, PA 1988Google Scholar
24ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials ASTM International West Conshohocken, PA 2001Google Scholar
25ASTM C1161-02c Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature ASTM International West Conshohocken, PA 2003Google Scholar
26Guinea, G.V., Pastor, J.Y., Planas, J.Elices, M.: Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int. J. Fract. 89, 103ASTM International West Conshohocken, PA 1998Google Scholar
27ASTM C1421-01b Standard Test Method for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature ASTM International West Conshohocken, PA 2002Google Scholar
28Wang, Y.X., Tan, S.H.Jiang, D.L.: The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC. Carbon 42, 1833 2004Google Scholar
29Wang, Q.G.Davidson, C.J.: Solidification and precipitation behaviour of Al-Si-Mg casting alloys. J. Mater. Sci. 36, 739 2001CrossRefGoogle Scholar
30Mortensen, A.Jin, I.: Solidification processing of metal matrix composites. Int. Mater. Rev. 37, 101 1992Google Scholar
31Kaul, V.S.Faber, K.T.: Nanoindentation analysis of the elastic properties of porous SiC derived from wood. Scripta Mater. 58, 886 2008Google Scholar
32Hahn, G.T.Rosenfield, A.R.: Metallurgical factors affecting fracture toughness of aluminum-alloys. Metall. Trans. A 6, 653 1975CrossRefGoogle Scholar
33Pech-Canul, M.I.Makhlouf, M.M.: Processing of Al-SiCp metal matrix composites by pressureless infiltration of SiCp preforms. J. Mater. Synth. Proc. 8, 35 2000CrossRefGoogle Scholar
34Studart, A.R., Gonzenbach, U.T., Tervoort, E.Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 1771 2006CrossRefGoogle Scholar
35Clyne, T.W.Withers, P.J.: An Introduction to Metal Matrix Composites Cambridge University Press New York 1993CrossRefGoogle Scholar
36Faber, K.T.Evans, A.G.: Intergranular crack-deflection toughening in silicon-carbide. J. Am. Ceram. Soc. 66, C94 1983Google Scholar