Skip to main content Accessibility help

Mechanical properties of iron-based bulk metallic glasses

  • X.J. Gu (a1), S. Joseph Poon (a1) and Gary J. Shiflet (a2)


Iron-based bulk metallic glasses (BMGs) are characterized by high fracture strengths and elastic moduli, with some exhibiting fracture strengths near 4 GPa, 2–3 times those of conventional high-strength steels. Among the Fe-based BMGs, the non-ferromagnetic ones, designated “non-ferromagnetic amorphous steel alloys” by two of the present authors [S.J. Poon et al.: Appl. Phys. Lett.83, 1131 (2003)], have glass-forming ability high enough to form single-phase glassy rods with diameters reaching 16 mm. Fe-based BMGs designed for structural applications must exhibit some plasticity under compression. However, the role of alloy composition on plastic and brittle failures in metallic glasses is largely unknown. In view of a recently observed correlation that exists between plasticity and Poisson’s ratio for BMGs, compositional effects on plasticity and elastic properties in amorphous steels were investigated. For the new amorphous steels, fracture strengths as high as 4.4 GPa and plastic strains reaching ∼0.8% were measured. Plastic failure instead of brittle failure was observed as the Poisson’s ratio approached 0.32 from below. Investigation of the relationship between the elastic moduli of the alloys and those of the alloying elements revealed that interatomic interactions in addition to the elastic moduli of the alloying elements must be considered in designing ductile Fe-based BMGs. The prospects for attaining high fracture toughness in Fe-based BMGs are discussed in this article.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Ponnambalam, V., Poon, S.J., Shiflet, G.J., Keppens, V.M., Taylor, R., and Petculescu, G.: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 (2003).
2Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).
3Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe–Mn–Cr– Mo–(Y,Ln)–C–B (Ln = lanthanides) bulk metallic glasses as formable amorphous steel alloys. J. Mater. Res. 19, 3046 (2004).
4Lu, Z.P., Liu, C.T., Thompson, J.R., and Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).
5Inoue, A., Shen, B.L., Yavari, A.R., and Greer, A.L.: Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J. Mater. Res. 18, 1487 (2003).
6Inoue, A., Shen, B.L., and Chang, C.T.: Super-high strength of over 4000 MPa in Fe-based bulk glassy alloys in [(Fe1− x Cox )0.75B0.2Si0.05]96Nb4 system. Acta Mater. 52, 4093 (2004).
7Stoica, M., Eckert, J., Roth, S., Zhang, Z.F., Schultz, L., and Wang, W.H.: Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics 13, 764 (2005).
8Gu, X.J., McDermott, A.G., Poon, S.J., and Shiflet, G.J.: Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).
9Shen, J., Chen, Q., Sun, J., Fan, H., and Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).
10Chen, H.S.: Elastic constants, hardness and their implications to flow properties of metallic glasses. J. Non-Cryst. Solids 18, 157 (1975).
11Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
12Kimura, H. and Masumoto, T.: Strength, ductility and toughness—A study in model mechanics, in Amorphous Metallic Alloys edited by Luborsky, F.E. (Butterworths, Boston, MA, 1983), p. 187.
13Boll, R., Hilzinger, H.R., and Warlimont, H.: Magnetic material properties and applications of metallic glasses in electronic devices, in Glassy Metals: Magnetic, Chemical, and Structural Properties, edited by Hasegawa, R. (CRC Press, Boca Raton, FL, 1983), p. 183.
14Hess, P.A., Poon, S.J., Shiflet, G.J., and Dauskardt, R.H.: Indentation fracture toughness of amorphous steel. J. Mater. Res. 20, 783 (2005).
15Shen, T.D. and Schwarz, R.B.: Bulk ferromagnetic glasses prepared by flux melting and water quenching. Appl. Phys. Lett. 75, 49 (1999).
16Migliori, A., Sarrao, J.L., Visscher, W.M., Bell, T.M., Lei, M., Fisk, Z., and Leisure, R.G.: Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B (Amsterdam) 183, 1 (1993).
17Zhang, B., Wang, R.J., Zhao, D.G., Pan, M.X., and Wang, W.H.: Properties of Ce-based bulk metallic glass-forming alloys. Phys. Rev. B 70, 224208 (2004).
18de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K.: Cohesion in metals transition metal alloys, in Cohesion and Structure Vol. 1, edited by de Boer, F.R. and Pettifor, D.G. (North Holland, Amsterdam, The Netherlands, 1988).
19Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
20Yao, K.F., Ruan, F., Yang, Y.Q., and Chen, N.: Superductile bulk metallic glass. Appl. Phys. Lett. 88, 122106 (2006).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed