Skip to main content Accessibility help
×
Home

The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation

  • Matthew R. Taw (a1), John D. Yeager (a2), Daniel E. Hooks (a2), Teresa M. Carvajal (a3) and David F. Bahr (a1)...

Abstract

Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This study measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistently at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. This provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: dfbahr@purdue.edu

Footnotes

Hide All

Contributing Editor: Linda S. Schadler

Footnotes

References

Hide All
1. Duncan-Hewitt, W.C. and Weatherly, G.C.: Evaluating the hardness, Young’s modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques. J. Mater. Sci. Lett. 8, 1350 (1989).
2. Armstrong, R.W. and Elban, W.L.: Materials science and technology aspects of energetic (explosive) materials. Mater. Sci. Technol. 22, 381 (2006).
3. Wu, C.Y., Ruddy, O.M., Bentham, A.C., Hancock, B.C., Best, S.M., and Elliot, J.A.: Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 152, 107 (2005).
4. Sun, C.C.: Decoding powder tabletability: Roles of particle adhesion and plasticity. J. Adhes. Sci. Technol. 25, 483 (2011).
5. Malla Reddy, C., Rama Krishna, G., and Ghosh, S.: Mechanical properties of molecular crystals-applications to crystal engineering. CrystEngComm 12, 2296 (2010).
6. Jing, Y.Y., Zhang, Y., Blendell, J., Koslowski, M., and Carvajal, M.T.: Nanoindentation method to study slip planes in molecular crystals in a systematic manner. Cryst. Growth Des. 11, 5260 (2011).
7. Schuh, C.A.: Nanoindentation study of materials. Mater. Today 9(5), 3240 (2006).
8. Li, X.D., Diao, D.F., and Bhushan, B.: Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater. 45, 4453 (1997).
9. Varughese, S., Kiran, M.S.R.N., Solanko, K.A., Bond, A.D., Ramamurty, U., and Desiraju, G.R.: Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation. Chem. Sci. 2, 2236 (2011).
10. Chen, J., Wang, W., Qian, L.H., and Lu, K.: Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation. Scr. Mater. 49, 645 (2003).
11. Cottrell, A.H.: Dislocations and Plastic Flow in Crystals (Oxford Press, Oxford, England, 1952); p. 9.
12. Masterson, V.M. and Cao, X.P.: Evaluating particle hardness of pharmaceutical solids using AFM nanoindentation. Int. J. Pharm. 362, 163 (2008).
13. Varughese, S., Kiran, M.S.R.N., Ramamurty, U., and Desiraju, G.R.: Nanoindentation in crystal engineering: Quantifying mechanical properties of molecular crystals. Angew. Chem., Int. Ed. 52, 2701 (2013).
14. Xu, Z.H. and Li, X.: Effect of sample tilt on nanoindentation behaviour of materials. Philos. Mag. 87, 2299 (2007).
15. Liao, X.M. and Wiedmann, T.S.: Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation. J. Pharm. Sci. 94, 79 (2004).
16. Zhou, X.Q., Lu, Z.P., Zhang, Q., Chen, D., Li, H.Z., Nie, F.D., and Zhang, C.Y.: Mechanical anisotropy of the energetic crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7): A study by nanoindentation experiments and density functional theory calculations. J. Phys. Chem. C 120, 13434 (2016).
17. Bouma, R.H.B., Duvalois, W., and Van der Heijden, A.E.D.M.: Microscopic characterization of defect structure in RDX crystals. J. Microsc. 252, 263 (2013).
18. Ramos, K.J., Bahr, D.F., and Hooks, D.E.: Defect and surface asperity dependent yield during contact loading of an organic molecular single crystal. Philos. Mag. 91, 1276 (2011).
19. Ramos, K.J. and Bahr, D.F.: Mechanical behavior assessment of sucrose using nanoindentation. J. Mater. Res. 22, 2037 (2007).
20. Varughese, S., Kiran, M.S.R.N., Ramamurty, U., and Desiraju, G.R.: Nanoindentation in crystal engineering: Quantifying mechanical properties of molecular crystals. Angew. Chem., Int. Ed. 52, 2702 (2013).
21. Bellamy, A.J., Latypov, N.V., and Goede, P.: Nitration of the 6-methyl-1, 3, 5-triazine derivatives, 6-methyl-1, 3, 5-triazine-2, 4 (1H, 3H)-dione and 2, 4-dimethoxy-6-methyl-1, 3, 5-triazine. J. Chem. Res. 2003, 529 (2003).
22. Hiskey, M., Chavez, D., and Naud, D.L.: Insensitive high-nitrogen compounds. NTIS No: DE220012776133, 2001.
23. Son, S.F., Asay, B.W., Henson, B.F., Sander, R.K., Ali, A.N., Zielinski, P.M., Phillips, D.S., Schwarz, R.B., and Skidmore, C.B.: Dynamic observation of a thermally activated structure change in 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) by second harmonic generation. J. Phys. Chem. B 103, 5434 (1999).
24. Foltz, M.F., Ornellas, D.L., Pagoria, P.F., and Mitchell, A.R.: Recrystallization and solubility of 1,3,5-triamino-2,4,6-trinitrobenzene in dimethyl sulfoxide. J. Mater. Sci. 31, 1893 (1996).
25. Skidmore, C.B., Phillips, D.S., Son, S.F., and Asay, B.W.: Characterization of HMX particles in PBX 9501. In AIP Conference Proceedings, Schmidt, S.C., Dandekar, D.P. and Forbes, J.W., eds. Vol. 429 (American Institute of Physics, Melville, New York, 1998); p. 579.
26. Maughan, M.R., Carvajal, M.T., and Bahr, D.F.: Nanomechanical testing technique for millimeter-sized and smaller molecular crystals. Int. J. Pharm. 486, 324 (2015).
27. Veauthier, J.M., Chavez, D.E., Tappan, B.C., and Parrish, D.A.: Synthesis and characterization of furazan energetics ADAAF and DOATF. J. Energ. Mater. 28, 229 (2010).
28. Cady, H.H., Larson, A.C., and Cromer, D.T.: The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr. 16, 617 (1963).
29. Bemm, U. and Ostmark, H.: 1,1-diamino-2,2-dinitroethylene: A novel energetic material with infinite layers in two dimensions. Acta Crystallogr. 54, 1997 (1998).
30. Cady, H.H. and Larson, A.C.: The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene. Acta Crystallogr. 18, 485 (1965).
31. Zhang, C.Y., Xue, X.G., Cao, Y.F., Zhou, J.H., Zhang, A.B., Li, H.Z., Zhou, Y., Xu, R.J., and Gao, T.: Towards low-sensitive and high-energetic co-crystal ii: Structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic cocrystals. CrystEngComm 16, 5905 (2014).
32. Ramos, K.J., Hooks, D.E., and Bahr, D.F.: Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation. Philos. Mag. 89, 2381 (2009).
33. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
34. Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).
35. Wheatley, P.J.: The crystal and molecular structure of aspirin. J. Chem. Soc. 1964, 6036 (1964).
36. Ridgway, K., Shotton, E., and Glasby, J.: The hardness and elastic modulus of some crystalline pharmaceutical materials. J. Pharm. Pharmacol. 21, 19S (1969).
37. Olusanmi, D., Roberts, K.J., Ghadiri, M., and Ding, Y.: The breakage behaviour of aspirin under quasi-static indentation and single particle impact loading: Effect of crystallographic anisotropy. Int. J. Pharm. 411, 49 (2011).
38. Mohammed, H., Briscoe, B.J., and Pitt, K.G.: The intrinsic nature and the coherence of compacted pure pharmaceutical tablets. Powder Technol. 165, 11 (2006).
39. Haware, R.V., Kim, P., Ruffino, L., Nimi, B., Fadrowsky, C., Doyle, M., Boerrigter, S.X.M., Cuitino, A., and Morris, K.: Anisotropic crystal deformation measurements determined using powder X-ray diffraction and a new in situ compression stage. Int. J. Pharm. 418, 199 (2011).
40. Kucheyev, S.O., Gash, A.E., and Lorentz, T.. Deformation and fracture of LLM-105 molecular crystals studied by nanoindentation. Mater. Res. Express 1, 025036 (2014).
41. Li, M., Jun Tan, W., Kang, B., Juan Xu, R., and Tang, W.: The elastic modulus of β-HMX crystals determined by nanoindentation. Propellants, Explos., Pyrotech. 35, 379 (2010).
42. Taw, M. and Bahr, D.F.. The mechanical properties of minimally processed RDX. Propellants, Explos., Pyrotech. (2017). doi: 10.1002/prep.201600143.
43. Mathew, N. and Sewell, T.D.: Nanoindentation of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study. J. Phys. Chem. C 120, 8266 (2016).
44. Karki, S., Friscic, T., Fabian, L., and Laity, P.R.: Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol. Adv. Mater. 21, 3905 (2009).
45. McNamara, D.P., Childs, S.L., Giordano, J., Iarriccia, A., Cassidy, J., Shet, M.S., Mannion, R., O’Donnell, E., and Park, A.: Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 23, 1888 (2006).
46. Zhang, C.Y., Xue, X.G., Cao, Y.F., Zhou, J.H., Zhang, A.B., Li, H.Z., Zhou, Y., Xu, R.J., and Gao, T.: Towards low-sensitive and high-energetic co-crystal ii: Structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic cocrystals. CrystEngComm 16, 5905 (2014).
47. Zhang, J.H. and Shreeve, J.M.: Time for pairing: Cocrystal as advanced energetic materials. CrystEngComm 18, 6124 (2016).
48. Ghosh, S., Mondal, A., Kiran, M.S.R.N., Ramamurty, U., and Reddy, C.M.: The role of weak interactions in the phase transition and distinct mechanical behavior of two structurally similar caffeine co-crystal polymorphs studied by nanoindentation. Cryst. Growth Des. 13, 4435 (2013).
49. Karunatilaka, C., Bucar, D-K., Ditzler, L.R., Friscic, T., Swenson, D.C., MacGillivray, L.R., and Tivanski, A.V.: Softening and hardening of macro- and nano-sized organic cocrystals in a single- crystal transformation. Angew. Chem., Int. Ed. 50, 8642 (2011).
50. Guo, D.Z., An, Q. III, and Huang, F.L.: Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J. Phys. Chem. 118, 30202 (2014).
51. Li, H.R., Jie Shu, Y., Gao, S.J., Chen, L., Ma, Q., and Ju, X.H.: Easy methods to study the smart energetic TNT/CL-20 co-crystal. J. Mol. Model. 19, 4909 (2013).
52. Zheng, C.M., Chu, Y.T., Xu, L.W., Wang, F.Y., Lei, W., Xia, M.Z., and Gong, X.D.: Theoretical studies on a new furazan compound bis[4-nitramino-furazanyl-3-azoxy]azofurazan (ADNAAF). J. Mol. Model. 22, 129 (2016).
53. Scott Weingarten, N. and Sausa, R.C.: Nanomechanics of RDX single crystals by force-displacement measurements and molecular dynamics simulations. J. Phys. Chem. A 119, 9338 (2015).
54. Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, England 1985); p. 176.

Keywords

Type Description Title
WORD
Supplementary materials

Taw supplementary material
Supplementary Figure

 Word (392 KB)
392 KB

The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation

  • Matthew R. Taw (a1), John D. Yeager (a2), Daniel E. Hooks (a2), Teresa M. Carvajal (a3) and David F. Bahr (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed