Skip to main content Accessibility help
×
Home

Mechanical properties and microtructure of sputter-deposited Nb5Si3/Nb microlaminates

  • S.P. Rawal (a1), G.M. Swanson (a1) and W.C. Moshier (a1)

Abstract

Crystalline Nb5Si3/Nb microlaminates were fabricated to a thickness of 20 μm by depositing the materials onto elevated temperature (750 °C) substrates. Modulation wavelengths of the microlaminates were varied (λ = 40 and 200 nm) while holding their silicide volume fraction constant to assess the effect of layer thickness on the composite properties. X-ray and selected area diffraction confirmed that both the metal and silicide layers exhibited a polycrystalline structure in the as-deposited microlaminates. Nanoindentation measurements of both microlaminates indicated that calculated elastic modulus values were similar to the values obtained by the rule-of-mixtures (ROM). Nanohardness values of the microlaminates increased with decreasing wavelength in a manner described by the Hall-Petch relationship. Vickers hardness (Hv) measurements were also found to be a function of the modulation wavelength, decreasing from 7.32 GPa at λ = 40 nm to 3.04 GPa at λ = 200 nm. Even with a Nb volume fraction of 50%, the λ = 40 nm microlaminate and the monolithic Nb5Si3 film exhibited similar Vickers hardness values of 7.5 GPa. These results show the significant role of modulation wavelength on the hardness, compressive strength, and toughness characteristics of a microlaminate composite.

Copyright

References

Hide All
1Xiao, L. and Abbaschian, R., Mater. Sci. Eng. A155, 135145(1992).
2Maxwell, W. A. and Smith, R. W., NACA RM E52 F26 (1952).
3Fitzer, E., Rubisch, O., Schlichting, J., and Sewdas, I., Sci. Ceram. 6, XVIII (1973).
4Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68, C200 (1985).
5Yang, J. M. and Jeng, S. M., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), p. 139.
6Richardson, K. K. and Freitag, D. W., Ceram. Eng. Sci. Proc. 12(9–10), 1679 (1991).
7Gibala, R. et al, Mater. Sci. Eng. A155, 147158 (1992).
8Alman, D. E., Shaw, K. G., Sroloft, N. S., and Rajan, K., Mater. Sci.Eng. A155, 8593 (1992).
9Mescheter, D. J. and Schwartz, D. S., J. Met. 11, 52 (1984).
10Siemers, D. A., Jackson, M. R., Mohan, R. L., and Rairden, J. R., Ceram. Eng. Soc. Proc. 6, 896 (1985).
11Tiwari, R., Sampath, S., and Harman, H., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 807.
12Henager, C. H. Jr., Brimhall, J. L., and Hirth, J. P., Mater. Sci. Eng. A155, 109114 (1992).
13Shobu, K., Tsuhi, K., and Watanabe, T., Ceramic Developments, edited by Sorrell, C. C. and Ben-Nissan, B. (Trans. Tech. Publications, Aedermannsdorf, 1988), p. 675.
14Brupbacher, J. M., Christodoulou, L., and Nagle, D. C., US Patent 4710 348 (1987).
15Christodoulou, L., Nagle, D. C., and Brupbacher, J.M., US Patent 4774052 (1988).
16Nagle, D. C., Brupbacher, J. M., and Christodoulou, L., US Patent 4916029 (1990).
17Shaw, L. and Abbaschian, R., Acta Metall. Mater. 42(1), 213223 (1994).
18Vasudevan, A. K. and Petrovic, J. J., Mater. Sci. Eng. A155, 118 (1992).
19Maloney, M. J. and Hecht, R. J., Mater. Sci. Eng. A155, 1932 (1992).
20Alman, D. E., Shaw, K. G., Stoloff, N. S., and Rajan, K., Mater. Sci. Eng. A155, 8594 (1992).
21Henager, C. H. Jr., Brimhall, J. L., and Hirth, J. P., Mater. Sci. Eng. A155, 109114 (1992).
22Petrovic, J. J. and Honnell, R. E., Ceram. Eng. Sci. Proc. 11, 734744 (1990).
23Mendiratta, M. G. and Dimiduk, D. M., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), pp. 441446.
24Mendiratta, M. G., Lewandowski, J. J., and Dimiduk, D. M., Metall. Trans. A22, 15731583 (1991).
25Kajuch, J., Rigney, J. D., and Lewandowski, J.J., Mater. Sci. Eng. A155, 59 (1992).
26Chou, T. C., Nieh, T. G., McAdams, S.D., Pharr, G. M., and Oliver, W.C., J. Mater. Res. 7, 27742784 (1992).
27Chou, T. C., Nieh, T. G., Tsui, T. Y., Pharr, G. M., and Oliver, W. C., J. Mater. Res. 7, 27652773 (1992).
28Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. G., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).
29Yang, W. M. C., Tsakalakos, T., and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).
30Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 54, 734 (1983).
31Schuller, I. K. and Grimsditch, M., J. Vac. Sci. Technol. B 4, 1444 (1986).
32Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbins, S. E., Wagner, R. W., Cammarata, J. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44, 13760 (1991).
33National Research Council (NMAB-454, National Academy Press, Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145), (1987), p. 78.
34Helmersson, U., Todorova, S., Barnett, S. A., Aundgren, J. E., Markert, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).
35Thermophysical Properties of Matter, Vol. 7, Thermal Radiative Properties, Metallic Elements and Alloys, edited by Touloukian, Y. S. and DeWitt, D.P. (Plenum Publishing Corp., New York, 1970).
36Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., Handbook of Auger Electron Spectroscopy, 2nd ed. (Physical Electronics Division, Perkin-Elmers Corp., Eden Prairie, MN, 1978).
37Pharr, G. M. and Oliver, W. C., MRS Bull. XVII (7), 2833 (July 1992).
38Lewis, C. F., Material Eng., 31 (Oct. 1990).
39Thin Film Processes, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1978).
40Rawal, S. P., Moshier, W. C., Swanson, G. M., and Misra, M.S., unpublished work.
41Milman, Y., Galanov, B., and Chugunova, S. I., Acta Metall. Mater. 41(9), 25232532 (1993).
42Rice, R. W., The Science of Hardness Testing and its Research Applications, edited by Westbrook, J. H. and Conrad, H. (ASM, Metals Park, OH, Oct. 1971).
43Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).

Mechanical properties and microtructure of sputter-deposited Nb5Si3/Nb microlaminates

  • S.P. Rawal (a1), G.M. Swanson (a1) and W.C. Moshier (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed