Skip to main content Accessibility help

Mechanical enhancement of an aluminum layer by graphene coating

  • Ahmet Semih Erturk (a1), Mesut Kirca (a1) and Levent Kirkayak (a1)


In this paper, mechanical characteristics of the aluminum layer coated with graphene are investigated by performing numerical tensile experiments through classical molecular dynamics simulations. Based on the results of the simulations, it is shown that coating with graphene enhances the Young’s modulus of aluminum by 88% while changing the tensile behavior of aluminum with hardening–softening mechanisms and significantly increased toughness. Furthermore, the effect of loading rate is examined and a transformation to an amorphous phase is observed in the coated aluminum structure as the loading rate is increased. Even though the dominant component of the coated hybrid structure is the aluminum core in the elastic region, the graphene layer shows its effects majorly in the plastic region by a 60% increase in the ultimate tensile strength. High loading rates at room temperature cause the structure transforms to an amorphous phase, as expected. Thus, effects of loading rate and temperature on amorphization are investigated by performing the same simulations at different strain rates and temperatures (i.e., 0, 300, and 600 K).


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
2.Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011).
3.Ruiz, L., Xia, W., Meng, Z., and Keten, S.: A coarse-grained model for the mechanical behavior of multi-layer graphene. Carbon 82, 103 (2015).
4.Scarpa, F., Adhikari, S., and Srikantha Phani, A.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009).
5.Baykasoglu, C. and Mugan, A.: Nonlinear fracture analysis of single-layer graphene sheets. Eng. Fract. Mech. 96, 241 (2012).
6.Chambers, B.A., Notarianni, M., Liu, J., Motta, N., and Andersson, G.G.: Examining the electrical and chemical properties of reduced graphene oxide with varying annealing temperatures in argon atmosphere. Appl. Surf. Sci. 356, 719 (2015).
7.Kang, S.H., Fang, T.H., Hong, Z.H., and Chuang, C.H.: Mechanical properties of free-standing graphene oxide. Diamond Relat. Mater. 38, 73 (2013).
8.Liu, Y., Xie, B., Zhang, Z., Zheng, Q., and Xu, Z.: Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591 (2012).
9.Sakhaee-Pour, A.: Elastic properties of single-layered graphene sheet. Solid State Commun. 149, 91 (2009).
10.Gao, Y. and Hao, P.: Mechanical properties of monolayer graphene under tensile and compressive loading. Phys. E 41, 1561 (2009).
11.Guinea, F., Castro Neto, A.H., and Peres, N.M.R.: Electronic properties of stacks of graphene layers. Solid State Commun. 143, 116 (2007).
12.Shahil, K.M.F. and Balandin, A.A.: Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 152, 1331 (2012).
13.Venugopal, G., Krishnamoorthy, K., and Kim, S.J.: An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms. Appl. Surf. Sci. 280, 903 (2013).
14.Rosenzweig, S., Sorial, G.A., Sahle-Demessie, E., and McAvoy, D.C.: Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption. J. Hazard. Mater. 279, 410 (2014).
15.Kuilla, T., Bhadra, S., Yao, D.H., Kim, N.H., Bose, S., and Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350 (2010).
16.Cui, Y., Kundalwal, S.I., and Kumar, S.: Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313 (2016).
17.Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D., and Ge, H.: Modifying glass fibers with graphene oxide: Towards high-performance polymer composites. Compos. Sci. Technol. 97, 41 (2014).
18.Diwan, P., Harms, S., Raetzke, K., and Chandra, A.: Polymer electrolyte-graphene composites: Conductivity peaks and reasons thereof. Solid State Ionics 217, 13 (2012).
19.Lin, D., Richard Liu, C., and Cheng, G.J.: Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement. Acta Mater. 80, 183 (2014).
20.Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., and Han, S.M.: Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).
21.Zhang, D. and Zhan, Z.: Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J. Alloys Compd. 658, 663 (2016).
22.Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., and Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594 (2012).
23.Gao, X., Yue, H., Guo, E., Zhang, H., Lin, X., Yao, L., and Wang, B.: Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 94, 54 (2016).
24.Yan, S.J., Dai, S.L., Zhang, X.Y., Yang, C., Hong, Q.H., Chen, J.Z., and Lin, Z.M.: Investigating aluminum alloy reinforced by graphene nanoflakes. Mater. Sci. Eng., A 612, 440 (2014).
25.Rashad, M., Pan, F., Tang, A., and Asif, M.: Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci.: Mater. Int. 24, 101 (2014).
26.Pérez-Bustamante, R., Bolaños-Morales, D., Bonilla-Martínez, J., Estrada-Guel, I., and Martínez-Sánchez, R.: Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615, S578 (2015).
27.Li, J.L., Xiong, Y.C., Wang, X.D., Yan, S.J., Yang, C., He, W.W., Chen, J.Z., Wang, S.Q., Zhang, X.Y., and Dai, S.L.: Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng., A 626, 400 (2015).
28.Bastwros, M., Kim, G.Y., Zhu, C., Zhang, K., Wang, S., Tang, X., and Wang, X.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites, Part B 60, 111 (2014).
29.Bartolucci, S.F., Paras, J., Rafiee, M.A., Rafiee, J., Lee, S., Kapoor, D., and Koratkar, N.: Graphene-aluminum nanocomposites. Mater. Sci. Eng., A 528, 7933 (2011).
30.Jiao, M.D., Wang, L., Wang, C.Y., Zhang, Q., Ye, S.Y., and Wang, F.Y.: Molecular dynamics simulations on deformation and fracture of bi-layer graphene with different stacking pattern under tension. Phys. Lett. A 380, 609 (2016).
31.Martinez-Asencio, J. and Caturla, M.J.: Molecular dynamics simulations of defect production in graphene by carbon irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 352, 225 (2015).
32.Yoon, H.M., Kondaraju, S., and Lee, J.S.: Molecular dynamics simulations of the friction experienced by graphene flakes in rotational motion. Tribol. Int. 70, 170 (2014).
33.Nazemnezhad, R. and Hosseini-Hashemi, S.: Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys. Lett. A 378, 3225 (2014).
34.Zhang, Q., Diao, D.F., and Kubo, M.: Nanoscratching of multi-layer graphene by molecular dynamics simulations. Tribol. Int. 88, 85 (2015).
35.Shen, H.S., Xu, Y.M., and Zhang, C.L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Meth. Appl. Mech. Eng. 267, 458 (2013).
36.Ansari, R. and Sahmani, S.: Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl. Math. Model. 37, 7338 (2013).
37.Seifoori, S. and Hajabdollahi, H.: Impact behavior of single-layered graphene sheets based on analytical model and molecular dynamics simulation. Appl. Surf. Sci. 351, 565 (2015).
38.Fereidoon, A., Aleaghaee, S., and Taraghi, I.: Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: A molecular dynamics simulation. Comput. Mater. Sci. 102, 220 (2015).
39.Bashirvand, S. and Montazeri, A.: New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study. Mater. Des. 91, 306 (2016).
40.LAMMPS Molecular Dynamics Simulator (1995). Available at: (accessed May 30, 2018).
41.Shackelford, J.F., Alexander, W., James, F., Shackelford, E.J.F., and Alexander, W.: Materials Science Engineering Hand Book, 3rd ed. (CRC Press, Boca Raton, Florida, 2001).
42.Stuart, S.J., Tutein, A.B., and Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000).
43.Peng, P., Liao, G., Shi, T., Tang, Z., and Gao, Y.: Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl. Surf. Sci. 256, 6284 (2010).
44.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 15012 (2010).
45.Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20, 45021 (2012).
46.Sansoz, F.: Atomistic processes controlling flow stress scaling during compression of nanoscale face-centered-cubic crystals. Acta Mater. 59, 3364 (2011).
47.Aryal, S., Rulis, P., and Ching, W.Y.: Mechanism for amorphization of boron carbide B4C under uniaxial compression. Phys. Rev. B 84, 1 (2011).
48.Branicio, P.S. and Rino, J.P.: Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Phys. Rev. B 62, 16950 (2000).
49.Ikeda, H., Qi, Y., Çagin, T., Samwer, K., Johnson, W.L., and Goddard, W.A.: Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900 (1999).
50.Li, G. and Xiong, B.: Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloys Compd. 697, 31 (2017).
51.Li, M., Gao, H., Liang, J., Gu, S., You, W., Shu, D., Wang, J., and Sun, B.: Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater. Charact. 140, 172 (2018).


Mechanical enhancement of an aluminum layer by graphene coating

  • Ahmet Semih Erturk (a1), Mesut Kirca (a1) and Levent Kirkayak (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed