Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T22:22:52.663Z Has data issue: false hasContentIssue false

Materials characterization and effect of purity and ion implantation on the friction and wear of sublimed fullerene films

Published online by Cambridge University Press:  03 March 2011

B.K. Gupta
Affiliation:
Department of Mechanical Engineering, Computer Microtribology and Contamination Laboratory, The Ohio State University, Columbus, Ohio 43210-1107
Bharat Bhushan
Affiliation:
Department of Mechanical Engineering, Computer Microtribology and Contamination Laboratory, The Ohio State University, Columbus, Ohio 43210-1107
C. Capp
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1107
J.V. Coe
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1107
Get access

Abstract

In previous studies, sublimed C60-rich fullerene films on silicon, when slid against a 52100 steel ball under dry conditions, have exhibited low coefficient of friction (∼0.12). Films with different purities can be produced by sublimation at different substrate temperatures. In this paper, effects of purity of fullerene films and ion implantation of the films with Ar ions on the friction and wear properties of sublimed fullerene films are reported. C60-rich films (called here films with high purity) exhibit low macroscale friction. An increased amount of C70 and impurities in the fullerene film determined using Raman and Fourier transform infrared (FTIR), increases its coefficient of friction. Microscale friction measurements using friction force microscopy also exhibited similar trends. Low coefficient of friction of sublimed C60-rich films on silicon is probably due to the formation of a tenacious transfer film of C60 molecules on the mating 52100 steel ball surface. Based on scanning tunneling microscopy (STM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM), we found that fullerene films primarily consisted of C60 molecules in a fcc lattice structure. Nanoindenter was used to measure hardness and elastic modulus of the as-deposited films. Ion-implantation with 1 × 1016 Ar+ cm−2 reduced macroscale friction down to about 0.10 from 0.12 with an increase in wear life by a factor of 4; however, doses of 5 × 1016 ions cm−2 gave three times higher friction and poorer wear life; higher doses disintegrated the C60 molecules. Based on STM, TEM, Raman, FTIR, and laser desorption Fourier-transform ion cyclotron resonance mass spectrometer (LD/FT/ICR) studies, we found that the ion implantation with a dose of 1 × 1016 Ar+ cm−2 resulted in smoothening of the fullerene film surface probably by compacting clusters, but without disintegrating the C60 molecules. However, a high dose of 5 × 1016 Ar+ cm−2 damaged the C60 molecules, converting it to an amorphous carbon. Nanoindentation studies show that ion implantation with a dose of 1 × 1016 Ar+ cm−2 resulted in an increase in the hardness from about 1.2 to 4.0 GPa and in elastic modulus from about 70 to 75 GPa and modified the elastic-plastic deformation behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bhushan, B., Gupta, B. K., Van Cleef, G.W., Capp, C., and Coe, J. V., Appl. Phys. Lett. 62, 32533255 (1993).CrossRefGoogle Scholar
2Bhushan, B., Ruan, J., and Gupta, B. K., J. Phys. D: Appl. Phys. 26, 13191322 (1993).CrossRefGoogle Scholar
3Bhushan, B., Gupta, B. K., Van Cleef, G.W., Capp, C., and Coe, J. V., Trib. Trans. 36, 573580 (1993).CrossRefGoogle Scholar
4Ajie, H., Alvarez, M. M., Anz, S. J., Beck, R. D., Diederich, F., Fostiropoulos, K., Huffman, D. R., Kratschmer, W., Rubin, Y., Schriver, K. E., Sensharma, D., and Whetten, R. L., J. Phys. Chem. 94, 86308633 (1990).CrossRefGoogle Scholar
5Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354358 (1990).CrossRefGoogle Scholar
6Curl, R. F. and Smalley, R. E., Sci. Am. 265, 5463 (1991).CrossRefGoogle Scholar
7Kroto, H. W., Allaf, A. W., and Balm, S. P., Chem. Rev. 91, 12131235 (1991).CrossRefGoogle Scholar
8Ruan, J. and Bhushan, B., J. Mater. Res. 8, 30193022 (1993).CrossRefGoogle Scholar
9Regueiro, M. N., Monceau, P., and Hodeau, J. L., Nature 355, 237239 (1992).CrossRefGoogle Scholar
10Blau, P. J. and Haberlin, C. E., Thin Solid Films 219, 129134 (1993).CrossRefGoogle Scholar
11Thundat, T., Warmack, R. J., Ding, D., and Compton, R. N., Appl. Phys. Lett. 63, 891893 (1993).CrossRefGoogle Scholar
12Bhushan, B. and Gupta, B. K., Handbook of Tribology: Materials, Coatings, and Surface Treatments (McGraw-Hill, New York, 1991).Google Scholar
13Spalvins, T., Thin Solid Films 53, 285300 (1978).CrossRefGoogle Scholar
14Dimigen, H., Hubsch, H., Willich, P., and Reichelt, K., Thin Solid Films 129, 7991 (1985).CrossRefGoogle Scholar
15Rowe, G. W., Wear 3, 274285 (1960).CrossRefGoogle Scholar
16Fusaro, R. L., ASLE Trans. 8, 133145 (1977).Google Scholar
17Gupta, B. K., Janting, J., Jensen, U. M., Pedersen, G. N., and Sorensen, G., Appl. Phys. Lett. 61, 11771189 (1992).CrossRefGoogle Scholar
18Mikkelsen, N. J. and Sorensen, G., Surf. Coat. Technol. 51, 118123 (1992).CrossRefGoogle Scholar
19Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S.C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 86348636 (1990).CrossRefGoogle Scholar
20Scrivens, W. A., Bedworth, P. V., and Tour, J. M., J. Am. Chem. Soc. 114, 79177919 (1992).CrossRefGoogle Scholar
21Fischer, J. E., Werwa, E., and Heiney, P. A., Appl. Phys. A 56, 193196 (1993).CrossRefGoogle Scholar
22Hebard, A. F., Annu. Rev. Mater. Sci. 23, 159191 (1993).CrossRefGoogle Scholar
23Ziegler, J. P., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
24Limbach, P. A., Schweikhard, L., Cowen, K. A., McDermott, M. T., Marshall, A. G., and Coe, J. V., Am. Chem. Soc. 113, 67956798 (1991).CrossRefGoogle Scholar
25Wood, T. D., Van Cleef, G. W., Mearini, M. A., Coe, J. V., and Marshall, A. G., Rapid Commun. Mass Spectrom. 7, 304311 (1993).CrossRefGoogle Scholar
26Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
27Cox, D. M., Sherwood, R. D., Tindall, P., Creegan, K. M., Anderson, W., and Martella, D. J., in ACS Symposium Series on Fullerene: Synthesis, Properties, and Chemistry of Large Carbon Clusters, edited by Hammond, G. S. and Kuck, V. J. (American Chemical Society, Washington, DC, 1992), pp. 117126.Google Scholar
28Bethune, D. S., Meijer, G., Tang, W. C., Rosen, H. J., Golden, W. G., Seki, H., Brown, C. A., and de Vries, M. S., Chem. Phys. Lett. 179, 181186 (1991).CrossRefGoogle Scholar
29Negri, F., Orlandi, G., and Zerbetto, F., Chem. Phys. Lett. 190, 174178 (1992).CrossRefGoogle Scholar
30Cox, D. M., Behal, S., Disko, M., Gorun, S. M., Greaney, M., Hsu, C. S., Kollin, E. B., Millar, J., Robbins, J., Robbins, W., Sherwood, R. D., and Tindall, P., J. Am. Chem. Soc. 113, 29402944 (1991).CrossRefGoogle Scholar
31Edington, J. W., Practical Electron Microscopy in Materials Science: Monograph 4–Typical Electron Microscope Investigations (Macmillan Philips Technical Library, Eindhovan, The Netherlands, 1976), pp. 92102.CrossRefGoogle Scholar
32Saito, Y., Suzuki, N., Shinohara, H., Hayashi, T., and Tomita, M., Mater. Sci. Eng. B19, 1824 (1993).CrossRefGoogle Scholar
33Krakow, W., Rivera, N. M., Roy, R. A., Ruoff, R. S., and Cuomo, J. J., Appl. Phys. A 56, 185192 (1993).CrossRefGoogle Scholar
34Ossipyan, Yu.A., Bobrov, V. S., Grushko, Yu.S., Dilanyan, R. A., Zharikov, O. V., Lebyodkin, M. A., and Sh. Sheckhtman, V., Appl. Phys. A 56, 413416 (1993).CrossRefGoogle Scholar
35Shi, X. D., Kortan, A. R., Williams, J. M., Kini, A. M., Savall, B. M., and Chaikin, P. M., Phys. Rev. Lett. 68, 827830 (1992).CrossRefGoogle Scholar
36Mikkelsen, N. J. and Sorensen, G., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E., Fehrenbacher, L. L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), pp. 265270.Google Scholar