Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T21:38:21.461Z Has data issue: false hasContentIssue false

Magnetoelastic anisotropy distribution in glass-coated microwires

Published online by Cambridge University Press:  31 January 2011

J. Velázquez
Affiliation:
Instituto de Magnetismo Aplicado, RENFE-UCM, and Instituto de Ciencia de Materiales, CSIC, P.O. Box 155, 28230 Las Rozas, Madrid, Spain
M. Vázquez
Affiliation:
Instituto de Magnetismo Aplicado, RENFE-UCM, and Instituto de Ciencia de Materiales, CSIC, P.O. Box 155, 28230 Las Rozas, Madrid, Spain
A. P. Zhukov
Affiliation:
Instituto de Magnetismo Aplicado, RENFE-UCM, and Instituto de Ciencia de Materiales, CSIC, P.O. Box 155, 28230 Las Rozas, Madrid, Spain
Get access

Abstract

Amorphous microwires, obtained by the glass-coated melt-spinning method having diameters in the range of micrometers, can exhibit perfectly square (single and large Barkhausen jump) or quasi-anhysteretic hysteresis loops, depending on the easy magnetization direction determined by the intrinsic magnetoelastic anisotropy. The thermoelastic internal stressed frozen-in during the fabrication that model the domain structure are here calculated by considering the classical theory of elasticity. A complex stress distribution is obtained having magnitude of 103 MPa. Circular stresses turn out to be predominant, which arises from the composite nature of the microwire (metallic nucleus and insulating glass coating having different mechanical and thermal properties).

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Masumoto, T., Ohnaka, I., Inoue, I., and Hagiwara, M., Scripta Metall. 15, 293 (1981).CrossRefGoogle Scholar
2. Olofinjana, A. O. and Davies, H. A., Mater. Sci. Eng. A 186, 143 (1994).CrossRefGoogle Scholar
3. Ogasawara, I. and Ueno, S., IEEE Trans. Magn. 31, 1219 (1995).CrossRefGoogle Scholar
4. Humphrey, F. B., Mohri, K., Yamasaki, J., Kawamura, H., Malmhäll, R., and Ogasawara, I., in Magnetic Properties of Amorphous Metals, edited by Hernando, A., Madurga, V., Sánchez, M.C., and Vázquez, M. (Elsevier, Amsterdam, 1987), p. 110.Google Scholar
5. Hagiwara, M. and Inoue, I., in Rapidly Solidified Alloys, edited by Liebermann, H. H. (Marcel Dekker, New York, 1993), p. 141.Google Scholar
6. Velázquez, J., Vázquez, M., Hernando, A., Savage, H. T., and Wun-Fogle, M., J. Appl. Phys. 70, 6525 (1991).CrossRefGoogle Scholar
7. Nixdorf, J., Drah-Welt 53, 693 (1967).Google Scholar
8. Goto, T., Trans. JIM 21, 219 (1980).CrossRefGoogle Scholar
9. Baranov, S. A., Larin, V. S., Zhukov, A. P., and Vázquez, M., in Nanostructured and NonCrystalline Solids, edited by Vázquez, M. and Hernando, A. (World Scientific Publishing Co. Pte. Ltd., Singapore, 1995), p. 567; M. Vázquez and A. P. Zhukov, J. Magn. Magn. Mater. (in press).Google Scholar
10. Zhukov, A. P., Vázquez, M., Velázquez, J., Chiriac, H., and Larin, V., J. Magn. Magn. Mater. 151, 132 (1995).CrossRefGoogle Scholar
11. Madurga, V. and Hernando, A., Phys, J.: Condens. Matter 2, 2127 (1990).CrossRefGoogle Scholar
12. Costa, J. L. and Rao, K. V., in Physics of Magnetic Materials, edited by Gorzkowski, W. (World Scientific, Singapore, 1991), p. 279.Google Scholar
13. Chiriac, H., Ovári, T. A., and Pop, Gh., Phys. Rev. B 52, 10 104 (1995).CrossRefGoogle Scholar
14. Timoshenko, S. and Goodier, J. N., in Theory of Elasticity (McGraw Hill Book Company, Inc., New York, 1951), Chap. 14, Sec. 135;Google Scholar
14. Timoshenko, S. and Goodier, J. N., in Theory of Elasticity (McGraw Hill Book Company, Inc., New York, 1951), Chap. 4, Sec. 25;Google Scholar
14. Timoshenko, S. and Goodier, J. N., in Theory of Elasticity (McGraw Hill Book Company, Inc., New York, 1951), Chap. 14, Sec. 135.Google Scholar
15. CRC Handbook of Chemistry and Physics (CRC Press, Inc., Boca Raton, FL, 1986).Google Scholar
16. Isachenko, V., Osipova, V., and Sukomel, A., in Heat Transfer, edited by Mezhkniga and Moscú (1979), Chap. 3, Sec. 4.Google Scholar
17. Ayres, F., in Differential Equations, Theory and Problems (McGraw-Hill Book Company, Inc., New York, 1052), p. 222.Google Scholar
18. Vázquez, M. and Chen, D-X., IEEE Trans. Magn. 31, 1229 (1995).CrossRefGoogle Scholar
19. Severino, A. M., Gómez-Polo, C., Marín, P., and Vázquez, M., J. Magn. Magn. Mater. 103, 117 (1992).CrossRefGoogle Scholar