Skip to main content Accessibility help

Magnetization, micro-x-ray fluorescence, and transmission electron microscopy studies of low concentrations of nanoscale Fe3O4 particles in epoxy resin

  • A. N. Thorpe (a1), F. E. Senftle (a1), M. Holt (a1), J. Grant (a1), W. Lowe (a2), H. Anderson (a2), E. Williams (a2), C. Monkres (a3) and A. Barkatt (a3)...


Magnetization measurements, transmission electron microscopy (TEM), and high-resolution micro-x-ray fluorescence (μ-XRF) using a synchrotron radiation source (Advanced Photon Source) were used to examine Fe3O4 particle agglomerates of nominally 10-nm particles at low concentrations (down to 0.03%) in thick epoxy resin samples. The magnetization measurements showed that at low concentrations (<0.5%) the magnetite particles, although closely packed in the agglomerates, did not interact magnetically. Predicated on a 2-μm sample step scan, the μ-XRF results were compatible with the presence of spherical agglomerates due to magnetostatic attraction, and these ranged in size from 100 to several thousand nanometers, as observed in TEM measurements. At smaller step scans the resolution could be significantly improved. Thus, the synchroton μ-XRF method was very useful in detecting very small concentrations of particles in thick samples and could probably be used to detect particles in amounts as low as 10−16 g.



Hide All
1.Nanophase Materials, edited by Hadjipanayis, G.C. and Siegel, R.W., (Kluwer, Dordrecht, The Netherlands, 1994), p. 808.
2.Yu, E.T. and Pennycock, S.J., MRS Bull. 22, (1997), p. 17.
3.Krueger, D.A., IEEE Trans. Mag. MAG-16, 251 (1980).
4.Chikazumi, S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogawa, M., and Kurikara, Y., J. Magn. Magn. Mater. 65, 245 (1987).
5.Chantrell, R., Bradbury, A., Popplewell, J., and Charles, S., J. Appl. Phys. 53, 2742 (1982).
6.Peterson, E. and Krueger, D.J., Colloid Interface Sci. 62, 24 (1977).
7.Sandell, E.B., Colorimetric Determination of Traces of Metals, 3rd ed. (Interscience, New York, NY, 1959).
8.Rosman, R., Janssen, J., and Rekveldt, M., J. Appl. Phys. 67, 3072 (1990).
9.Kuo, P.C. and Chang, C.Y., J. Appl. Phys. 57, 4678 (1985).
10.Ebisawa, Y., Sugermoto, Y., Hayashi, T., Kohulo, T., Okwa, K., and Yamamuro, Y., J. Ceram. Soc. 99, 7 (1991).
11.Tanaka, K., Nakahava, Y., Hirao, K., and Soga, N., J. Magn. Magn. Mater. 168, 20 (1997).
12.Bean, C. and Livingston, J., J. Appl. Phys. Suppl. 30, 1205 (1959).
13.Candela, G. and Haines, R., J. Appl. Phys. 34, 868 (1979).
14.Rosensweig, R.E., Ferrohydrodynamics (Cambridge University Press, Cambridge, United Kingdom, 1985).
15.Lechtenberg, F., Garbe, S., Bauch, J., Dingwell, D.B., Freitag, J., Haller, M., Hansteen, T.H., Ippach, P., Knöckel, A., Radtke, M., Romano, C., Sachs, P.M., Schminche, H., and Ullrich, H., J. Trace and Microprobe Tech. 14, 561 (1996).
16.Ice, G.E., Riemer, B., and Khounsary, A., in High-Brightness Synchrotron Radiation Beamlines II, Proc. SPIE 2856, 226 (1996).
17.Rindby, A., Engström, P., Janssens, K., and Osan, J., Nuc. Instr. Methods 124B, 591 (1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed