Hostname: page-component-788cddb947-nxk7g Total loading time: 0 Render date: 2024-10-19T03:46:36.789Z Has data issue: false hasContentIssue false

The magnetization in (Zn1–xCox)Ga2O4 (x = 0.05, 0.10, and 0.20) diluted magnetic semiconductors depending on Co atoms in tetrahedral and octahedral sites

Published online by Cambridge University Press:  12 May 2014

Musa Mutlu Can*
Affiliation:
Faculty of Engineering and Natural Sciences, Nanotechnology Research and Application Center, Sabancı University, Tuzla 34956, Istanbul, Turkey; and CNR-SPIN, Universitá di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, Via Cintia, Napoli I-80126, Italy
*
a)Address all correspondence to this author. e-mail: musamutlucan@gmail.com
Get access

Abstract

The present study describes magnetic interactions in (Zn1–xCox)Ga2O4 (x = 0.05, 0.10, and 0.20) particles dependant on Co atoms in both tetrahedral and octahedral sites. The effects of substituted Co atoms to magnetic character are analyzed using Curie–Weiss law. The ferromagnetic character is found dominant in (Zn1–xCox)Ga2O4 semiconductors for x values lower than 0.10; in addition, a specific hysteresis with 139 ± 50 Oe coercivity is observed for 5% Co-doped ZnGa2O4. The high Co amount in tetrahedral site increased the number of antiferromagnetic couplings and the hysteresis at 300 K disappeared for (Zn0.80Co0.20)Ga2O4 particles. Furthermore, the Co+3 ions in the octahedral site decreased µeff values, per Co amounts, in the range of 4.89 ± 0.01 µB/Co to 4.44 ± 0.02 µB/Co, because of enhancing paramagnetic behaviors.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Furdyna, J.K.: Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988).Google Scholar
Dietl, T., Haury, A., and d'Aubigné, Y.M.: Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys. Rev. B 55, R3347R3350 (1997).CrossRefGoogle Scholar
Barzykin, V.: Ferromagnetism from localized deep impurities in magnetic semiconductors. Phys. Rev. B 71, 155203 (2005).CrossRefGoogle Scholar
Pearton, S.J., Abernathy, C.R., Thaler, G.T., Frazier, R., Ren, F., Hebard, A.F., Park, Y.D., Norton, D.P., Tang, W., Stavola, M., Zavadaf, J.M., and Wilson, R.G.: Effects of defects and doping on wide band gap ferromagnetic semiconductors. Physica B 340342, 39 (2003).Google Scholar
Fukumura, T., Yamada, Y., Toyosaki, H., Hasegawa, T., Koinuma, H., and Kawasaki, M.: Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223(1–3), 62 (2004).Google Scholar
Lawes, G., Risbud, A.S., Ramirez, A.P., and Seshadri, R.: Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys. Rev. B 71, 045201 (2005).Google Scholar
Gao, K.H., Li, Z.Q., Liu, X.J., Song, W., Liu, H., and Jiang, E.Y.: Bulk Sn1?xMnxO2 magnetic semiconductors without room-temperature ferromagnetism. Solid State Commun. 138, 175 (2006).CrossRefGoogle Scholar
Berardan, D. and Guilmeau, E.: Magnetic properties of bulk Fe-doped indium oxide. J. Phys.: Condens. Matter 19, 236224 (2007).Google Scholar
Prellier, W., Fouchet, A., and Mercey, B.: Oxide-diluted magnetic semiconductors: A review of the experimental status. J. Phys.: Condens. Matter 15, R1583 (2003).Google Scholar
Bibes, M. and Barthélémy, A.: Oxide spintronics. IEEE Trans. Electron Devices 54(5), 1003 (2007).CrossRefGoogle Scholar
Chou, H., Lin, C.P., Huang, J.C.A., and Hsu, H.S.: Magnetic coupling and electric conduction in oxide diluted magnetic semiconductors. Phys. Rev. B 77, 245210 (2008).Google Scholar
Jani, O., Ferguson, I., Honsberg, C., and Kurtz, S.: Design and characterization of GaN/InGaN solar cells. Appl. Phys. Lett. 91, 132117 (2007).Google Scholar
Sankapal, B.R., Sartale, S.D., Lokhande, C.D., and Ennaoui, A.: Chemical synthesis of Cd-free wide band gap materials for solar cells. Sol. Energy Mater. Sol. Cells 83(4), 447 (2004).CrossRefGoogle Scholar
Meyers, P.V.: Design of a thin film CdTe solar cell. Solar Cells 23(1–2), 59 (1988).Google Scholar
Chae, D.J., Kim, D.Y., Kim, T.G., Sung, Y.M., and Kim, M.D.: AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes. Appl. Phys. Lett. 100, 081110 (2012).Google Scholar
Trivedi, M. and Shenai, K.: Performance evaluation of high-power wide band-gap semiconductor rectifiers. J. Appl. Phys. 85, 6889 (1999).Google Scholar
Lai, Y-H., Cheung, W-Y., Lok, S-K., Wong, G.K.L., Ho, S-K., Tam, K-W., and Sou, I-K.: Rocksalt MgS solar blind ultra-violet detectors. AIP Adv. 2, 012149 (2012).Google Scholar
Can, M.M., Gafferi, H., Aksoy, S., Shah, S.I., and Fırat, T.: Synthesis and characterization of ZnGa2O4 particles prepared by solid state reaction. J. Alloys Compd. 549, 303 (2013).CrossRefGoogle Scholar
Tas, A.C., Majewski, P.J., and Aldinger, F.: Chemical Synthesis of Crystalline, Pure or Mn-doped ZnGa2O4 Powders at 90 °C. J. Mater. Res. 17(6), 1425 (2002).Google Scholar
Zhitari, V.F., Muntean, S.P., and Pavlenko, V.I.: Photoluminescence of ZnGa2O4 doped with Mn, Yb, Sm, and Tb. Inorg. Mater. 45(3), 278 (2009).CrossRefGoogle Scholar
Gu, Z., Liu, F., Li, X., Howe, J., Xu, J., Zhao, Y., and Pan, Z.: Red, Green, and Blue Luminescence from ZnGa2O4 Nanowire Arrays. J. Phys. Chem. Lett. 1, 354 (2010).Google Scholar
Kim, J.S., Park, H.L., Kim, G.C., Kim, T.W., Hwang, Y.H., Kim, H.K., Mho, S.I., and Han, S.D.: Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping. Solid State Commun. 126, 515518 (2003).Google Scholar
Kim, J.S., Kim, J.S., Kim, T.W., Kim, S.M., and Park, H.L.: Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor. Appl. Phys. Lett. 86, 091912 (2005).Google Scholar
Jeong, J.H., Moon, B.K., Seo, H.J., Bae, J.S., Yi, S-S., Kim, W. III., and Park, H.L.: Enhanced green emission in ZnGa2O4: Mn thin film phosphors by Se doping. Appl. Phys. Lett. 83, 1346 (2003).CrossRefGoogle Scholar
Rack, P.D., Peterson, J.J., Potter, M.D., and Park, W.: Eu+3 and Cr+3 doping for red cathodoluminescence in ZnGa2O4 . J. Mater. Res. 16(5), 14291433 (2001).CrossRefGoogle Scholar
Duan, X.L., Yuan, D.R., Wang, L.H., Yu, F.P., Cheng, X.F., Liu, Z.Q., and Yan, S.S.: Synthesis and optical properties of Co2+-doped ZnGa2O4 nanocrystals. J. Cryst. Growth 296, 234238 (2006).CrossRefGoogle Scholar
Dutta, T., Gupta, P., Bhosle, V., and Narayan, J.: MoOx modified ZnGaO based transparent conducting oxides. J. Appl. Phys. 105, 053704 (2009).Google Scholar
Kumagai, N., Ni, L., and Irie, H.: A visible-light-sensitive water splitting photocatalyst composed of Rh3+ in a 4d6 electronic configuration, Rh3+-doped ZnGa2O4 . Chem. Commun. 47, 18841886 (2011).CrossRefGoogle Scholar
Maitra, T. and Valent, R.: Ferromagnetism in the Fe-substituted spinel semiconductor ZnGa2O4 . J. Phys.: Condens. Matter 17, 7417 (2005).Google Scholar
Risbud, A.S., Seshadri, R., Ensling, J., and Felser, C.: Dilute ferrimagnetic semiconductors in Fe-substituted spinel ZnGa2O4 . J. Phys.: Condens. Matter 17, 1003 (2005).Google Scholar
Pisani, L., Maitra, T., and Valentí, R.: Effects of Fe substitution on the electronic, transport, and magnetic properties of ZnGa2O4: A systematic ab initio study. Phys. Rev. B 73, 205204 (2006).Google Scholar
Dutta, P., Seehra, M.S., Thota, S., and Kumar, J.: A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4 . J. Phys.: Condens. Matter 20, 015218 (2008).Google Scholar
Shirley, R.: The Crysfire 2002 System for Automatic Powder Indexing: User's Manual (The Lattice Press, Guildford, Surrey, England, 2002).Google Scholar
Zhang, W., Zhang, J., Lan, X., Chen, Z., and Wang, T.: Photocatalytic performance of ZnGa2O4 for degradation of methylene blue and its improvement by doping with Cd. Catal. Commun. 11, 1104 (2010).Google Scholar
Binet, L. and Gourier, D.: Origin of the Blue Lum?nescence of β-Ga2O3 . J. Phys. Chem. Solid 59(8), 1241 (1998).Google Scholar
Bouloudenine, M., Viart, N., Colis, S., and Dinia, A.: Zn1?xCoxO diluted magnetic semiconductors synthesized under hydrothermal conditions. Catal. Today 113, 240 (2006).Google Scholar
Koidl, P.: Optical absorption of Co2+ in ZnO. Phys. Rev. B 15, 2493 (1977).Google Scholar
Kim, K.J. and Park, Y.R.: Spectroscopic ellipsometry study of optical transitions in Zn1-xCoxO alloys. Appl. Phys. Lett. 81, 1420 (2002).Google Scholar
Denisov, I.A., Volk, Y.V., Malyarevich, A.M., Yumashev, K.V., Dymshits, O.S., Zhilin, A.A., Kang, U., and Lee, K-H.: Linear and nonlinear optical properties of cobalt-doped zinc aluminum glass ceramics. J. Appl. Phys. 93, 3827 (2003).Google Scholar
Mindru, I., Gingasu, D., Marinescu, G., Patron, L., Diamandescu, L., Feder, M., Calderon-Moreno, J.M., and Stanica, N.: Tartarate precursors to CoxZn1?xGa2O4 spinel oxides. Mater. Chem. Phys. 134, 478 (2012).Google Scholar
Volk, Y.V., Malyarevich, A.M., Yumashev, K.V., Alekseeva, I.P., Dymshits, O.S., Shashkin, A.V., and Zhilin, A.A.: Stimulated emission of Co2+-doped glass?ceramics. J. Non-Cryst. Solid 353, 2408 (2007).CrossRefGoogle Scholar
Kang, H.I., Kim, J.S., Lee, M., Bahng, J.H., Choi, J.C., Park, H.L., Kim, G.C., Kim, T.W., Hwang, Y.H., Mho, S.I., Eom, S.H., Yu, Y.S., Song, H.J., and Kim, W.T.: Tunable color emission of ZnGa2O4:Si4+ phosphors with enhanced brightness due to donor formation. Solid State Commun. 122, 633 (2002).Google Scholar
López-Moreno, S., Romero, A.H., Rodríguez-Hernández, P., and Muñoz, A.: Ab initio study of the high-pressure phases and dynamical properties of ZnAl2O4 and ZnGa2O4. High Pressure Res. 29(4), 573 (2009).Google Scholar
Bouchard, M. and Gambardella, A.: Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J. Raman Spectrosc. 41, 1477 (2010).Google Scholar
Lopez-Moreno, S., Rodriguez-Hernandez, P., Munoz, A., Romero, A.H., J.Manjon, F., Errandonea, D., Rusu, E., and Ursaki, V.V.: Lattice dynamics of ZnAl2O4 and ZnGa2O4 under high pressure. Ann. Phys. (Berlin) 523(1–2), 157 (2011).Google Scholar
Van Gorkom, G.G.P., Haanstra, J.H., and Boom, H.V.D.: Infrared and Raman spectra of the spinel ZnGa2O4 . J. Raman Spectrosc. 1(5), 513 (1973).CrossRefGoogle Scholar
Boppana, V.B.R. and Lobo, R.F.: SnOx?ZnGa2O4 photocatalysts with enhanced visible light activity. ACS Catal. 1, 923 (2011).Google Scholar
Iida, Y. and Okazaki, M.: Anal. Sci. 17 supplement, il145 (2001).Google Scholar
Withnall, R., Lipman, A.L., Fern, G.R., Rose, A., and Silver, J.: Redox properties of a green emitting ZnGa2O4: Mn low voltage cathodoluminescent phosphor. J. Mater. Sci.: Mater. Electron. 17, 745 (2006).Google Scholar
Can, M.M., Firat, T., and Ozcan, S.: Dominancy of antiferromagnetism in Zn1?xCoxO diluted magnetic semiconductors. J. Mater. Sci. 46, 1830 (2011).Google Scholar
Punnoose, A., Hays, J., Thurber, A., Engelhard, M.H., Kukkadapu, R.K., Wang, C., Shutthanandan, V., and Thevuthasan, S.: Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping. Phys. Rev. B 72, 054402 (2005).CrossRefGoogle Scholar
Mandal, S.K., Das, A.K., Nath, T.K., Karmakar, D., and Satpati, B.: Microstructural, magnetic, and optical properties of Zn1?x(Mnx/2Cox/2)O (x=0.1 and 0.2) semiconducting nanoparticles. J. Appl. Phys. 100, 104315 (2006).Google Scholar
Wang, Y., Herron, N., Moiler, K., and Bein, T.: Three dimensionally confined diluted magnetic semiconductor clusters: Zn1?xMnxS. Solid State Commun. 77(1), 33 (1991).Google Scholar
Cao, G., McCall, S., Shepard, M., Crow, J.E., and Guertin, R.P.: Thermal, magnetic, and transport properties of single-crystal Sr1-xCaxRuO3 (0<∼x<∼1.0). Phys. Rev. B 56(1), 321 (1997).CrossRefGoogle Scholar
Kobayashi, M., Ishida, Y., Hwang, J.I., Mizokawa, T., Fujimori, A., Mamiya, K., Okamoto, J., Takeda, Y., Okane, T., Saitoh, Y., Muramatsu, Y., Tanaka, A., Saeki, H., Tabata, H., and Kawai, T.: Characterization of magnetic components in the diluted magnetic semiconductor Zn1?xCoxO by x-ray magnetic circular dichroism. Phys. Rev. B 72, 201201R (2005).Google Scholar
Tovar, M., Causa, M.T., Butera, A., Navarro, J., Martinez, B., Fontcuberta, J., and Passeggi, M.C.G.: Evidence of strong antiferromagnetic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6. Phys. Rev. B 66, 024409 (2002).Google Scholar
Timm, C., von Oppen, F., and Hofling, F.: Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise. Phys. Rev. B 69, 115202 (2004).Google Scholar