Skip to main content Accessibility help
×
Home

Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity

  • Huan Liu (a1), Yeheng He (a1) and Xin Liang (a1)

Abstract

Fe3O4@TiO2 magnetic photocatalysts containing sub-10-nm TiO2 nanocrystals with two different morphologies (nanoparticles and nanorods) were prepared via a facile straight dipping process. A series of comparative experiments on organic pollutant degradation demonstrated that Fe3O4@TiO2 nanorods show superior activity and faster degradation rates than Fe3O4@TiO2 nanoparticles. Combined with the study of high resolution transmission electron microscopy, crystal models are given to analyze the morphology effect of TiO2 nanocrystals on their photocatalytic activities for organic degradation. TiO2 nanorods with more (100) crystal planes, which have relatively higher surface energy and relative higher density of Ti atoms, showed a higher activity than that of TiO2 nanoparticles. Furthermore, both Fe3O4@TiO2 nanorods and Fe3O4@TiO2 nanoparticles show better photocatalytic activities than several comparison Fe3O4@TiO2 samples due to the strong size effect arising from the tiny size of TiO2 nanorods and nanoparticles. These magnetic photocatalysts also show advantages in separation and recycling utilization.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: liangxin@mail.buct.edu.cn

References

Hide All
1. Fox, M.A. and Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).
2. Heller, A.: Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503 (1995).
3. Linsebigler, A.L., Lu, G., and Yates, J.T. Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).
4. Fu, W., Yang, H., Li, M., Yang, N., and Zou, G.: Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater. Lett. 59, 3530 (2005).
5. Watson, S., Beydoun, D., and Amal, R.: Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J. Photochem. Photobiol., A 148, 303 (2002).
6. Xu, M.W., Bao, S.J., and Zhang, X.G.: Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194 (2005).
7. Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y.: Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).
8. Kormann, C., Bahnemann, D.W., and Hoffmann, M.R.: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).
9. Dinh, C.T., Nguyen, T.D., Kleitz, F., and Do, T.O.: Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11), 3737 (2009).
10. Li, J., Yu, Y., Chen, Q., and Xu, D.: Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst. Growth Des. 10, 2111 (2010).
11. Li, Y., Zhang, M., Guo, M., and Wang, X.: Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met. 28, 423 (2009).
12. Xuan, S., Jiang, W., Gong, X., Hu, Y., and Chen, Z.: Magnetically separable Fe3O4/TiO2 hollow spheres: Fabrication and photocatalytic activity. J. Phys. Chem. 113, 553 (2008).
13. Agrawal, M., Gupta, S., Pich, A., Zafeiropoulos, N.E., Rubio-Retama, J., Jehnichen, D., and Stamm, M.: Template-assisted fabrication of magnetically responsive hollow titania capsules. Langmuir 26, 17649 (2010).
14. Ma, W.F., Zhang, Y., Li, L.L., You, L.J., Zhang, P., Zhang, Y.T., Li, J.M., Yu, M., Guo, J., and Lu, H.J.: Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 6, 3179 (2012).
15. Yan, A., Liu, X., Qiu, G., Wu, H., Yi, R., Zhang, N., and Xu, J.: Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd. 458, 487 (2008).
16. Li, X.L., Peng, Q., Yi, J.X., Wang, X., and Li, Y.: Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 12, 2383 (2005).
17. Al-Ekabi, H. and Serpone, N.: Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem. 92, 5726 (1988).
18. Leng, W.H., Liu, H., Cheng, S.A., Zhang, J.Q., and Cao, C.N.: Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. J. Photochem. Photobiol., A 131, 125 (2000).
19. Domènech, X. and Peral, J.: Kinetics of the photocatalytic oxidation of N (III) and S (IV) on different semiconductor oxides. Chemosphere 38, 1265 (1999).
20. Laoufi, N., Tassalit, D., and Bentahar, F.: The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. GLOBAL NEST J 3, 10 (2008).
21. Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 453, 638 (2008).
22. Penn, R.L. and Banfield, J.F.: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549 (1999).
23. Jun, Y., Casula, M.F., Sim, J.H., Kim, S.Y., Cheon, J., and Alivisatos, A.P.: Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125, 15981 (2003).
24. Chemseddine, A. and Moritz, T.: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).
25. De Angelis, F., Vitillaro, G., Kavan, L., Nazeeruddin, M.K., and Grätzel, M.: Modeling ruthenium dye sensitized TiO2 surfaces exposing the (001) or (101) faces: A first principles investigation. J. Phys. Chem. C 116, 18124 (2012).
26. Anandan, S., Sathish Kumar, P., Pugazhenthiran, N., Madhavan, J., and Maruthamuthu, P.: Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol. Energy Mater. Sol. Cells 92, 929 (2008).
27. Harir, M., Gaspar, A., Kanawati, B., Fekete, A., Frommberger, M., Martens, D., Kettrup, A., El Azzouzi, M., and Schmitt-Kopplin, P.: Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: Kinetic and photoproducts study. Appl. Catal., B 84, 524 (2008).
28. Lazzeri, M., Vittadini, A., and Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B: Condens. Matter 63, 155409 (2001).
29. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).

Keywords

Related content

Powered by UNSILO

Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity

  • Huan Liu (a1), Yeheng He (a1) and Xin Liang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.