Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T06:54:55.543Z Has data issue: false hasContentIssue false

Magnetic, electrical, and microstructural properties of YBa2Cu3O7: A comparison of sol-gel, co-precipitated, and solid state processing routes

Published online by Cambridge University Press:  31 January 2011

E. A. Hayri
Affiliation:
Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
M. Greenblatt
Affiliation:
Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
K. V. Ramanujachary
Affiliation:
Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
M. Nagano
Affiliation:
Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
J. Oliver
Affiliation:
Department of Ceramic Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
M. J. Miceli
Affiliation:
Department of Ceramic Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
R. Gerhardt
Affiliation:
Department of Ceramic Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
Get access

Abstract

Samples of YBa2Cu3O7 were prepared by sol-gel, co-precipitation, and solid state processes. Sol-gel samples were prepared from a solution of yttrium, barium, and copper nitrates dissolved in ethylene glycol, co-precipitated samples were made by the amorphous citrate method, and solid state samples were prepared by conventional high temperature reaction of the appropriate metal oxides and carbonates. The sol-gel process was shown to yield superconducting samples of superior Meissner effect, critical current, and critical field. The co-precipitated samples contain impurities that affect the critical properties. The sol-gel and co-precipitated processes yield materials with well-formed, plate-like particles with a fairly uniform size of about 10 μm. The grains in the solid state sample are smaller but have a much wider distribution of sizes than the samples prepared by solution methods.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J.B. and Muller, K. A.Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K.Ashburn, J. R.Tomg, C. J.Hor, P.H.Meng, R. L.Gao, L.Huang, Z.J.Wang, Y. Q. and Chu, C.W.Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Dunn, B.Chu, C.T.Zhou, L-W.Cooper, J. R. and Gruner, G.Adv. Cer. Mat. 2, 343 (1987).Google Scholar
4Kayser, M.H.Borglum, B.Antony, G.Shyu, S.G. and Buchanan, R. C.Mat. Res. Soc. Symp. Proc. 99, 159 (1988).CrossRefGoogle Scholar
5Wang, C.T.Lin, L.S.Lin, J.H.Su, J.Y.Yang, S.J. and Hsu, S.E.Mat. Res. Soc. Symp. Proc. 99, 257 (1988).CrossRefGoogle Scholar
6Barboux, P.Tarascon, J.M.Greene, L. H.Hull, G. W. and Bagley, B.G.J. Appl. Phys. 63, 2725 (1988).CrossRefGoogle Scholar
7Wu, K.Kramer, S. and Kordas, G.Mat. Res. Soc. Symp. Proc. 99, 395 (1988).CrossRefGoogle Scholar
8Nagano, M. and Greenblatt, M.Solid State Commun. 67, 595 (1988).CrossRefGoogle Scholar
9Bordia, R.K.Horowitz, H. S.Subramanian, M.A.Michel, J.B.McCarron, E. M. III , Torardi, C. C.Bolt, J. D.Chowdhry, U.Lop-drup, E., and Poon, S.J.Mat. Res. Soc. Soc. Symp. Proc. 99, 245 (1988).CrossRefGoogle Scholar
10Cima, M. J.Chiu, R. and Rhine, W. E.Mat. Res. Soc. Symp. Proc. 99, 241 (1988).CrossRefGoogle Scholar
11Behrman, E.C.Amarakoon, V. R. W.Axelson, S.R.Bhargava, A.Brooks, K. G.Burdick, V. L.Carson, S. W.Corah, N. L.Cordaro, J. F.Cormack, A. N.DiCarlo, D.G.Dwivedi, A.Fischman, G. S.Friel, J.Hanagan, M.J.Hexemer, R. L.Heuberger, M.Hong, K-S.Hsu, J-Y.Hsu, W-D.Johnson, P. F.LaCourse, W. C.LaGraff, J. R.Laksh-minarasimha, M., Laughner, J.W.Longobardo, A.V.Malone, P. F.McCluskey, P.H.McPherson, D. M.Mroz, T. J.Rabidoux, C. W.Reed, J. S.Sainamthip, P.Sanchez, S. C.Sheckler, C. A.Schulze, W. A.Seth, V. K., Shelby, J. E.Shieh, S. H. M.Simmins, J. J.Simpson, J. C.Snyder, R. L.Swiler, D. J.Taylor, A. T.Udaykumar, R.Varshneya, A.K.Vitch, S. M. and Votava, W. E.Adv. Cer. Mat. 2, 539 (1987).Google Scholar
12Bean, C.P.Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
13Dinger, T. R.Worthington, T. K.Gallagher, W. J. and Sandstrom, R. L.Phys. Rev. Lett. 58, 2687 (1987).CrossRefGoogle Scholar
14McGuire, T.R.Dinger, T.R. P.Freitas, J.P.Gallagher, W. J.Plaskett, T. S.Sandstrom, R.L. and Shaw, T.Phys. Rev. B 36, 4032 (1987).CrossRefGoogle Scholar
15Barboux, P.Tarascon, J.M.Bagley, B.G.Greene, L.H.Hall, G. W.Meagher, B. W. and Eom, C. B.Mat. Res. Soc. Symp. Proc. 99, 49 (1988).CrossRefGoogle Scholar