Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-13T11:31:48.726Z Has data issue: false hasContentIssue false

Magnetic and microstructure study of bulk (Sm0.33Eu0.33Gd0.33)Ba2Cu3Oy with submicron Gd2BaCuO5 second-phase particles

Published online by Cambridge University Press:  31 January 2011

M. Muralidhar
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
M. Jirsa
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
N. Sakai
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
Y. Wu
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
M. Murakami
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
Get access

Abstract

We fabricated melt-processed (Sm0.33Eu0.33Gd0.33)Ba2Cu3Oy superconductors with fine Gd2BaCuO5 (Gd-211) particles and studied microstructure and magnetic properties as a function of the Gd-211 content and the initial particle size. Microstructure observation by scanning electron microscopy and transmission electron microscopy confirmed the presence of submicron secondary-phase particles and nanometer-sized RE1+xBa2-xCu3Oy (x ≫ 0) clusters. At 77 K, the critical current densities of 107 and 83 kA/cm2 were achieved at 0 T (self-field) and 2.2 T, respectively (superconducting quantum interference device data).

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moon, F.C. and Chang, P.Z., Appl. Phys. Lett. 56, 22 (1990).CrossRefGoogle Scholar
2.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
3.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
4.Campbell, A.M. and Cardwell, D.A., Cryogenics 37, 567 (1997).CrossRefGoogle Scholar
5.Hull, J.R., Supercond. Sci. Technol. 13, R1 (2000).CrossRefGoogle Scholar
6.Muralidhar, M., Koblischka, M.R., Saitoh, T., and Murakami, M., Supercond. Sci. Technol. 11, 1349 (1998).CrossRefGoogle Scholar
7.Muralidhar, M., Koblischka, M.R., Diko, P., and Murakami, M., Appl. Phys. Lett. 76, 91 (2000).CrossRefGoogle Scholar
8.Muralidhar, M., Murakami, M., Segawa, K., Kamada, K., and Saito, T., U.S. Patent No. 6 063 736 (2000).Google Scholar
9.Muralidhar, M. and Murakami, M., Phys. Rev. B 62, 911 (2000).CrossRefGoogle Scholar
10.Muralidhar, M., Jirsa, M., Sakai, N., and Murakami, M., Appl. Phys. Lett. 79, 3107 (2001).CrossRefGoogle Scholar
11.Muralidhar, M., Nariki, S., Jirsa, M., and Murakami, M., Appl. Phys. Lett. 80, 1016 (2002).CrossRefGoogle Scholar
12.Jirsa, M., Muralidhar, M., Murakami, M., Noto, K., Nishizaki, T., and Kobayashi, N., Supercond. Sci. Technol. 14, 50 (2001).CrossRefGoogle Scholar
13.Muralidhar, M. and Murakami, M., Physica C 309, 39 (1988).CrossRefGoogle Scholar
14.Muralidhar, M. and Murakami, M., Physica C 363, 19 (2001).CrossRefGoogle Scholar
15.Muralidhar, M., Jirsa, M., Nariki, S., and Murakami, M., Supercond. Sci. Technol. 14, 832 (2001).CrossRefGoogle Scholar
16.Chen, D.X. and Goldfarb, R.B, J. Appl. Phys. 66, 2489 (1989).CrossRefGoogle Scholar
17.Muralidhar, M., Nariki, S., Jirsa, M., and Murakami, M., Physica C 378–381, 746 (2002).CrossRefGoogle Scholar
18.Zhou, L., Chen, S.K., Wang, K.G., Wu, X.Z., Zhang, P.X., and Feng, Y., Physica C 363, 99 (2001).CrossRefGoogle Scholar
19.Reddy, E.S. and Rajasekharan, T., Physica C 279, 56 (1997).CrossRefGoogle Scholar
20.Jirsa, M., Zablotskii, V., Muralidhar, M., Iida, K., and Murakami, M., Physica C 378–381, 707 (2002).CrossRefGoogle Scholar
21.Nariki, S., Seo, S.J., Sakai, N., and Murakami, M., Supercond. Sci. Technol. 13, 778 (2000).CrossRefGoogle Scholar
22.Lo, W., Cardwell, D.A., Dung, S-L., Barter, R.G., J. Mater. Sci. 30, 3995 (1995).CrossRefGoogle Scholar
23.Nariki, S., Sakai, N., and Murakami, M., Supercond. Sci. Technol. 15, 648 (2002).CrossRefGoogle Scholar
24.Reddy, E. Sudhakar and Rajasekharn, T., Supercond. Sci. Technol. 11, 523 (1998).CrossRefGoogle Scholar
25.Lo, W., Cardwell, D.A., Chow, J.C.L., Leung, H-T., J. Mater. Sci. 13, 2035 (1998).Google Scholar
26.Kambara, M., Yoshizumi, M., Umeda, T., Miyake, K., Murata, K., Izumi, T., and Shiohara, Y., J. Mater. Sci. 16, 2229 (2001).Google Scholar
27.Nariki, S., Sakai, N., and Murakami, M., Physica C 379–381, 631 (2002).CrossRefGoogle Scholar