Skip to main content Accessibility help

Luminescent material with functionalized graphitic carbon nitride as a photovoltaic booster in DSSCs: Enhanced charge separation and transfer

  • Yanzhou Zhang (a1), Kai Pan (a1), Yang Qu (a1), Guofeng Wang (a1), Qilin Dai (a2), Dingsheng Wang (a3) and Weiping Qin (a4)...


Small luminescent Y2O3:Eu3+ particles were prepared by a hydrothermal method first, and then, Y2O3:Eu3+/C3N4 nanocomposites were further prepared by a chemisorption method. The luminescent Y2O3:Eu3+/C3N4 nanocomposites are not only a promising down-conversion luminescent material, but also it could be used to improve the efficiencies of dye-sensitized solar cells (DSSCs). Especially, the morphology of Y2O3:Eu3+ has great influence on the performance of DSSCs. Compared with Y2O3:Eu3+ nanorods, the introduction of small Y2O3:Eu3+ particles into the cells is conducive to the improvement of cell efficiency. The efficiencies of TiO2-Y2O3:Eu3+–C3N4 composite cells were not only higher than those of pure TiO2 cells but also higher than those of TiO2-Y2O3:Eu3+ or TiO2-C3N4 composite cells, resulting in the enhancement of the average efficiency of the TiO2-Y2O3:Eu3+–C3N4 composite cell from 7.16% to 8.14%, with 14% improvement over the pure TiO2 cell. The enhancement of the efficiency can be attributed to the synergetic effect of small Y2O3:Eu3+ particles and C3N4.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.O’Regan, B. and Graetzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
2.Fan, K., Yu, J., and Ho, W.: Improving photoanodes to obtain highly efficient dye-sensitized solar cells: A brief review. Mater. Horiz. 4, 319 (2017).
3.Li, L., Wu, W., Rao, H., Chen, H., Feng, H., Kuang, D., and Su, C.: Hierarchical ZnO nanorod-on-nanosheet arrays electrodes for efficient CdSe quantum dot-sensitized solar cells. Sci. China Mater. 59, 807 (2016).
4.Liu, X., Yue, G., and Zheng, H.: A promising vanadium sulfide counter electrode for efficient dye-sensitized solar cells. RSC Adv. 7, 12474 (2017).
5.Cui, W., Ma, J., Wu, K., and Wu, M.: The preparation and performance of WO3@C as a counter electrode catalyst for dye-sensitized solar cell. Int. J. Electrochem. Sci. 12, 11487 (2017).
6.Liu, T., Mai, X., Chen, H., Ren, J., Liu, Z., Li, Y., Gao, L., Wang, N., Zhang, J., He, H., and Guo, Z.: Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale 10, 4194 (2018).
7.Kim, J., Lee, J., Shin, K., Jeong, H., Son, H., Lee, C., Park, J., Lee, S., Son, J., and Ko, M.: Highly crumpled graphene nano-networks as electrocatalytic counter electrode in photovoltaics. Appl. Catal., B 192, 342349 (2016).
8.Wu, Q., Feng, H., Chen, H., Kuang, D., and Su, C.: Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5, 12699 (2017).
9.Chen, D., Zhang, H., Liu, Y., and Li, J.: Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 1362 (2013).
10.Ding, Y., Xia, X., Chen, W., Hu, L., Mo, L., Huang, Y., and Dai, S.: Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high efficiency dye-sensitized solar cells. Nano Res. 9, 1891 (2016).
11.Wang, W., Wang, Y., Li, C., Wu, Y., Zhang, D., Hong, K., and Sun, Y.: Design, synthesis and electrocatalytic properties of coaxial and layer-tunable MoS2 nanofragments/TiO2 nanorod arrays. Chem. Commun. 53, 5461 (2017).
12.Yang, R., Cai, J., Lv, K., Wu, X., Wang, W., Xu, Z., Li, M., Li, Q., and Xu, W.: Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity. Appl. Catal., B 210, 184 (2017).
13.Liu, M., Hou, Y., and Qua, X.: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).
14.Qi, L., Wang, Q., Wang, T., Li, C., Ouyang, Q., and Chen, Y.: Dye-sensitized solar cells based on ZnO nanoneedle/TiO2 nanoparticle composite photoelectrodes with controllable weight ratio. J. Mater. Res. 27, 2982 (2012).
15.Wang, W., Liu, Y., Qu, J., Chen, Y., Tad, M., and Shao, Z.: Synthesis of hierarchical TiO2-C3N4 hybrid microspheres with enhanced photocatalytic and photovoltaic activities by maximizing the synergistic effect. ChemPhotoChem 1, 35 (2017).
16.Zhang, G., Ji, Q., Wu, Z., Wang, G., Liu, H., Qu, J., and Li, J.: Facile “Spot-Heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition. Adv. Funct. Mater. 28, 1706462 (2018).
17., X., Shen, J., Wu, Z., Wang, J., and Xie, J.: Deposition of Ag nanoparticles on g-C3N4 nanosheet by N,N-dimethylformamide: Soft synthesis and enhanced photocatalytic activity. J. Mater. Res. 29, 2170 (2014).
18.Liu, Q., Guo, Y., Chen, Z., Zhang, Z., and Fang, X.: Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl. Catal., B 183, 231 (2016).
19.Liang, Q., Li, Z., Bai, Y., Huang, Z., Kang, F., and Yang, Q.: Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci. China Mater. 60, 109 (2017).
20.Li, Y., Wang, G., Pan, K., Jiang, B., Tian, C., Zhou, W., and Fu, H.: NaYF4:Er3+/Yb3+-graphene composites: Preparation, upconversion luminescence, and application in dye sensitized solar cells. J. Mater. Chem. 22, 20381 (2012).
21.Casalucia, S., Gemmib, M., Pellegrinic, V., Carloa, A., and Bonaccorso, F.: Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8, 5368 (2016).
22.Li, X., Qu, Y., Pan, K., and Wang, G.: One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells. Nano Res. 11, 1322 (2018).
23.Xu, J., Shalom, M., Piersimoni, F., Antonietti, M., Neher, D., and Brenner, T.: Color-Tunable photoluminescence and NIR electroluminescence in carbon nitride thin films and light-emitting diodes. Adv. Opt. Mater. 3, 913 (2016).
24.Xu, J., Brenner, T., Chen, Z., Neher, D., Antonietti, M., and Shalom, M.: Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light. ACS Appl. Mater. Interfaces 6, 16481 (2014).
25.Xu, J., Brenner, T., Chabanne, L., Neher, D., Antonietti, M., and Shalom, M.: Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V oc exceeding 1 V. J. Am. Chem. Soc. 136, 13486 (2014).
26.Wang, L. and Li, Y.: Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727 (2007).
27.Xia, Z. and Meijerink, A.: Ce3+-doped garnet phosphors: Composition modification, luminescence properties and applications. Chem. Soc. Rev. 46, 275 (2017).
28.Xu, J., Han, W., Cheng, Z., Yang, P., Bi, H., Yang, D., Niu, N., He, F., Gai, S., and Lin, J.: Bioresponsiveness and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. Chem. Sci. 9, 3233 (2018).
29.Bai, X., Wang, S., Xu, S., and Wang, L.: Luminescent nanocarriers for simultaneous drug/gene delivery and imaging tracking. TrAC, Trends Anal. Chem. 73, 54 (2015).
30.Hao, S., Shang, Y., Li, D., Ågrenb, H., Yang, C., and Chen, G.: Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale 9, 6711 (2017).
31.Suyver, J., Aebischer, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Krämer, K., Reinhard, C., and Güdel, H.: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111 (2005).
32.Cui, J., Li, Y., Liu, L., Chen, L., Xu, J., Ma, J., Fang, G., Zhu, E., Wu, H., Zhao, L., Wang, L., and Huang, Y.: Near infrared plasmonic enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 15, 6295 (2015).
33.Ding, Z., Li, X., Zhang, P., Yu, J., and Hua, Y.: Enhanced electrochemical performance of sulfur on Y2O3-modified porous carbon aerogels for high performance lithium–sulfur batteries. New J. Chem. 41, 12726 (2017).
34.Yu, M., Su, J., Wang, G., and Li, Y.: Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Res. 9, 2338 (2016).
35.Lin, L., Yeh, M., Chen, C., Wu, C., Vittal, R., and Ho, K.: Surface modification of TiO2 nanotube arrays with Y2O3 barrier layer: Controlling charge recombination dynamics in dye-sensitized solar cells. J. Mater. Chem. A 2, 8281 (2014).
36.Chen, S., Lin, J., and Wu, J.: Improving photoelectrical performance of dye sensitized solar cells by doping Y2O3:Tb3+ nanorods. J. Mater. Sci.: Mater. Electron. 25, 2060 (2004).
37.Wang, P., Dai, Q., Zakeeruddin, S., Forsyth, M., MacFarlane, D., and Grätzel, M.: Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 126, 13590 (2004).
38.Hagfeldt, A. and Grätzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000).


Type Description Title
Supplementary materials

Zhang et al. supplementary material
Zhang et al. supplementary material 1

 Word (1.0 MB)
1.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed