Skip to main content Accessibility help

Low-temperature synthesis and characterization of GaN nanocrystals from gallium trichloride precursor

  • F.S. Liu (a1), Q.L. Liu (a2), J.K. Liang (a3), G.B. Song (a4), L.T. Yang (a2), J. Luo (a2), Y.Q. Zhou (a2), H.W. Dong (a2) and G.H. Rao (a2)...


Gallium nitride (GaN) has been synthesized by reacting gallium trichloride with ammonia (NH3) at low temperatures ranging from 500 to 1000 °C for 12 h. X-ray diffraction, transmission electron microscopy, infrared, and Raman backscattering spectra revealed that the synthesized GaN powder consists of single-phase nano-sized crystallites with the wurtzite-type structure. The average size of the crystals decreases with the reaction temperature from approximately ∼63 nm at 1000 °C to ∼5 nm at 500 °C. GaOCl and ϵ–Ga2O3 are the intermediate products during synthesis of the GaN. Characteristic shifts of the Raman peaks are associated with the change in crystal size. The band-edge emission of GaN at 361 nm was observed on room temperature photoluminescence spectra exclusively for the sample synthesized at 1000 °C, while a new and broad emission band appeared with the center ranging from 827 to 765 nm for the samples synthesized between 500 and 800 °C.



Hide All
1Nakamura, S., Mukai, T. and Senoh, M.: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687 (1994).
2Manasevit, H.M., Erdmann, F.M. and Simpson, W.I.: The use of metalorganics in the preparation of semiconductor materials. IV. The nitrides of aluminum and gallium. J. Electrochem. Soc. 118, 1864 (1971).
3Andrews, J.E. and Littlejohn, M.: Growth of GaN thin-films from triethylgallium monamine. J. Electrochem. Soc. 122, 1273 (1975).
4Khan, M.A., Skogman, R.A., Schulze, R.G. and Gershenzon, M.: Electrical properties and ion implantation of epitaxial GaN, grown by low pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 42, 430 (1983).
5Detchprohm, T., Hiramatsu, K., Sawaki, N. and Akasaki, I.: The homoepitaxy of GaN by metalorganic vapor phase epitaxy using GaN substrates. J. Cryst. Growth 137, 170 (1994).
6Onitsuka, T., Maruyama, T., Akimoto, K. and Bando, Y.: Interface structure of GaN on sapphire (0 0 0 1) studied by transmission electron microscope. J. Cryst. Growth 189/190, 295 (1998).
7Puchinger, M., Wagner, T., Rodewald, B.J., Aldinger, F. and Lange, F.F.: Gallium nitride thin layers via a liquid precursor route. J. Cryst. Growth 208, 153 (2000).
8Jian, J.K., Chen, X.L., He, M., Wang, W.J., Zhang, X.N. and Shen, F.: Large-scale GaN nanobelts and nanowires grown from milled Ga2O3 powders. Chem. Phys. Lett. 368, 416 (2003).
9Maruska, H.P. and Tietjen, J.J.: The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15, 327 (1969).
10Jung, W-S.: Reaction intermediate(s) in the conversion of -gallium oxide to gallium nitride under a flow of ammonia. Mater. Lett. 57, 110 (2002).
11Xie, Y., Qian, Y.T., Wang, W.Z., Zhang, S.Y. and Zhang, Y.H.: A benzene-thermal synthetic route to nanocrystalline GaN. Science 272, 1926 (1996).
12Kisailus, D., Choi, J.H. and Lange, F.F.: GaN nanocrystals from oxygen and nitrogen-based precursors. J. Cryst. Growth 249, 106 (2003).
13Topf, M., Steude, G., Fischer, S., Kriegseis, W., Dirnstorfer, I., Meister, D. and Meyer, B.K.: Low-pressure chemical vapor deposition of GaN epitaxial films. J. Cryst. Growth 189/190, 330 (1998).
14Nickl, J.J., Just, W. and Bertinger, R.: Preparation of epitaxial gallium nitride. Mater. Res. Bull. 9, 1413 (1974).
15Born, P.J. and Robertson, D.S.: The chemical preparation of gallium nitride layers at low temperatures. J. Mater. Sci. 15, 3003 (1980).
16Lappa, R., Glowacki, G. and Galkowski, S.: Growth of GaN thin films from active nitrogen and GaCl. Thin Solid Films 32, 73 (1976).
17Takahashi, N., Matsumoto, R., Koukitu, A. and Seki, H.: Vapor phase epitaxy of In xGa1- xN using InCl3, GaCl3 and NH3 sources. Jpn. J. Appl. Phys. 36 L601 (1997).
18Bungaro, C., Rapcewicz, K. and Bernholc, J.: Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys. Rev. B 61, 6720 (2000).
19Wright, A.F. and Nelson, J.S.: Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method. Phys. Rev. B 50, 2159 (1994).
20Davydov, V.Yu., Kitaev, Yu.E., Goncharuk, I.N., Smirnov, A.N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M.B., Mirgorodsky, A.P. and Evarestov, R.A.: Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 (1998).
21Liu, H.L., Chen, C.C., Chia, C.T., Yeh, C.C., Chen, C.H., Yu, M.Y., Keller, S. and DenBarrs, S.P.: Infrared and Raman-scattering studies in single-crystalline GaN nanowires. Chem. Phys. Lett. 345, 245 (2001).
22Campbell, I.H. and Fauchet, P.M.: The effects of microcrystal size and shape on the one phonon raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986).
23Frayssinet, M.E., Knap, W., Prystawko, P., Leszczybski, M., Grzegory, I., Suski, T., Beaumont, B. and Gibart, P.: Infrared studies on GaN single crystals and homoepitaxial layers. J. Cryst. Growth 218, 161 (2000).
24Yu, G., Ishikawa, H., Umeno, M., Egawa, T., Watanabe, J., Soga, T. and Jimbo, T.: The infrared optical functions of Al x Ga1–x N determined by reflectance spectroscopy. Appl. Phys. Lett. 73, 1472 (1998).
25Zhao, L.X., Meng, G.W., Peng, X.S., Zhang, X.Y. and Zhang, L.D.: Synthesis, Raman scattering, and infrared spectra of large-scale GaN nanorods. J. Cryst. Growth 235, 124 (2002).
26Grandjean, N., Massies, J. and Leroux, M.: Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers. Appl. Phys. Lett. 69, 2071 (1996).
27Gotz, W., Johnson, N.M., Chen, C., Liu, H., Kuo, C. and Imler, W.: Activation energies of Si donors in GaN. Appl. Phys. Lett. 68, 3144 (1996).
28Balagurov, L. and Chong, P.J.: Study of deep-level defects in n-GaN by the optical transmission method. Appl. Phys. Lett. 68, 43 (1996).
29Reddy, C.V., Balakrishnan, K., Okumura, H. and Yoshida, S.: The origin of persistent photoconductivity and its relationship with yellow luminescence in molecular beam epitaxy grown undoped GaN. Appl. Phys. Lett. 73, 244 (1998).
30Kumar, M.S. and Kumar, J.: XRD, XPS, SEM, PL and Raman scattering analysis of synthesized GaN powder. Mater. Chem. Phys. 77, 341 (2002).


Related content

Powered by UNSILO

Low-temperature synthesis and characterization of GaN nanocrystals from gallium trichloride precursor

  • F.S. Liu (a1), Q.L. Liu (a2), J.K. Liang (a3), G.B. Song (a4), L.T. Yang (a2), J. Luo (a2), Y.Q. Zhou (a2), H.W. Dong (a2) and G.H. Rao (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.