Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T22:26:57.827Z Has data issue: false hasContentIssue false

Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder

Published online by Cambridge University Press:  31 January 2011

Seung Hwan Jo*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea
P. Muralidharan*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea
Do Kyung Kim*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea
*
a) These authors contributed equally to this work.
a) These authors contributed equally to this work.
b) Address all correspondence to this author. e-mail: dkkim@kaist.ac.kr
Get access

Abstract

Highly sinterable La10Si6O27 and La10Si5.5M0.5O27 (M = Mg, and Al) nanopowders with apatite-type structure have been synthesized via a homogeneous precipitation method using diethylamine (DEA) as a precipitant. The synthetic approach using an organic precipitant with dispersant characteristics is advantageous in configuring weakly agglomerated nanopowders, leading to desirable sintering activity. X-ray diffraction powder patterns confirmed the single-phase crystalline lanthanum silicate of hexagonal apatite structure at 800 °C, which is a relatively lower calcination temperature compared to conventionally prepared samples. Transmission electron microscopy images revealed particles ∼30 nm in size with a high degree of crystallinity. A dense grain morphology was recognized from the scanning electron microscopy images of the polished surface of the pellets that were sintered at 1400 and 1500 °C for 10 h. This low-temperature sintering is significant because conventional powder processing requires a temperature above 1700 °C to obtain the same dense electrolyte. The doped-lanthanum silicate electrolyte prepared by the DEA process and sintered at 1500 °C for 10 h exhibited electrical conductivity comparable with samples prepared at much higher sintering temperature (>1700 °C).

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shao, Z.P., Haile, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 2004CrossRefGoogle ScholarPubMed
2.Haile, S.M.: Fuel-cell materials and components. Acta Mater. 51, 5981 2003CrossRefGoogle Scholar
3.Hui, S., Roller, J., Yick, S., Zhang, X., Petit, C.D., Xie, Y., Maric, R., Ghosh, D.: A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Power Sources 172, 493 2007CrossRefGoogle Scholar
4.Steele, B.C.H.: Appraisal of Ce1−yGdyO2−y /2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95 2000CrossRefGoogle Scholar
5.Sammes, N.M., Tompsett, G.A., Nafe, H., Aldinger, F.: Bismuth based oxide electrolytes—Structure and ionic conductivity. J. Eur. Ceram. Soc. 19, 1801 1999CrossRefGoogle Scholar
6.Krok, F., Abrahams, I., Bangobango, D., Bogusz, W., Nelstrop, J.A.G.: Structural and electrical characterisation of BINIVOX. Solid State Ionics 111, 37 1998CrossRefGoogle Scholar
7.Jiang, S.P., Zhang, S., Zhen, Y.D.: Early interaction between Fe–Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells. J. Mater. Res. 20, 747 2005Google Scholar
8.Mauvy, F., Lenormand, P., Lalanne, C., Ansart, F., Bassat, J.M., Grenier, J.C.: Electrochemical characterization of YSZ thick films deposited by dip-coating process. J. Power Sources 171, 783 2007CrossRefGoogle Scholar
9.Badwal, S.P.S., Ciacchi, F.T.: Ceramic membrane technologies for oxygen separation. Adv. Mater. 13, 993 20013.0.CO;2-#>CrossRefGoogle Scholar
10.Chavan, S.V., Tyagi, A.K.: Combustion synthesis of nanocrystalline yttria-doped ceria. J. Mater. Res. 19, 474 2004CrossRefGoogle Scholar
11.Ishihara, T., Matsuda, H., Takita, Y.: Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 1994CrossRefGoogle Scholar
12.Molenda, J., Swierczek, K., Zajac, W.: Functional materials for the IT-SOFC. J. Power Sources 173, 657 2007CrossRefGoogle Scholar
13.Nakayama, S., Sakamoto, M.: Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J. Eur. Ceram. Soc. 18, 1413 1998CrossRefGoogle Scholar
14.Nakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T., Itoh, K.: Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal. J. Eur. Ceram. Soc. 19, 507 1999Google Scholar
15.Nakayama, S., Sakamoto, M.: Ionic conductivities of apatite-type LaX(GeO4)6O1.5X−12 (X = 8–9.33) polycrystals. J. Mater. Sci. Lett. 20, 1627 2001CrossRefGoogle Scholar
16.Arikawa, H., Nishiguchi, H., Ishihara, T., Takita, Y.: Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics 136, 31 2000CrossRefGoogle Scholar
17.Yoshioka, H., Tanase, S.: Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells. Solid State Ionics 176, 2395 2005Google Scholar
18.Higuchi, M., Kodaira, K., Nakayama, S.: Growth of apatite-type neodymium silicate single crystals by the floating-zone method. J. Cryst. Growth 207, 298 1999Google Scholar
19.Shaula, A.L., Kharton, V.V., Marques, F.M.B.: Ionic and electronic conductivities, stability and thermal expansion of La10-x(Si,Al)6O26+δ solid electrolytes. Solid State Ionics 177, 1725 2006CrossRefGoogle Scholar
20.Sansom, J.E.H., Kendrick, E., Tolchard, J.R., Islam, M.S., Slater, P.R.: A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates. J. Solid State Electrochem. 10, 562 2006Google Scholar
21.Bondar, I.A.: Physicochemical analysis of oxide systems based on a new class of chemical compounds-rare earth element germinates. Inorg. Mater. 15, 793 1979Google Scholar
22.Tao, S.W., Irvine, J.T.S.: Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process. Mater. Res. Bull. 36, 1245 2001Google Scholar
23.Abram, E.J., Kirk, C.A., Sinclair, D.C., West, A.R.: Synthesis and characterisation of lanthanum germanate-based apatite phases. Solid State Ionics 176, 1941 2005CrossRefGoogle Scholar
24.Pivak, Y.V., Kharton, V.V., Yaremchenko, A.A., Yakovlev, S.O., Kovalevsky, A.V., Frade, J.R., Marques, F.M.B.: Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems. J. Eur. Ceram. Soc. 27, 2445 2007CrossRefGoogle Scholar
25.Tian, C., Liu, J., Cai, J., Zeng, Y.: Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method. J. Alloys Compd. 458, 378 2008CrossRefGoogle Scholar
26.Herring, C.: Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301 1950CrossRefGoogle Scholar
27.Lee, D.D., Kang, S.J.L., Yoon, D.N.: Mechanism of grain growth and α–β′ transformation during liquid-phase sintering of β′-sialon. J. Am. Ceram. Soc. 71, 803 1988CrossRefGoogle Scholar
28.Kaliszewski, M.S., Heuer, A.H.: Alcohol interaction with zirconia powders. J. Am. Ceram. Soc. 73, 1504 1990CrossRefGoogle Scholar
29.Li, J.G., Ikegami, T., Lee, J.H., Mori, T.: Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta Mater. 49, 419 2001CrossRefGoogle Scholar
30.Mori, M., Yoshikawa, M., Itoh, H., Abe, T.: Effect of alumina on sintering behavior and electrical-conductivity of high-purity yttria-stabilized zirconia. J. Am. Ceram. Soc. 77, 2217 1994CrossRefGoogle Scholar
31.Abram, E.J., Sinclair, D.C., West, A.R.: A novel enhancement of ionic conductivity in the cation-deficient apatite La9.33(SiO4)6O2. J. Mater. Chem. 11, 1978 2001CrossRefGoogle Scholar