Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:54:49.034Z Has data issue: false hasContentIssue false

Low-temperature plasma-enhanced atomic layer deposition growth of WNxCy from a novel precursor for barrier applications in nanoscale devices

Published online by Cambridge University Press:  03 March 2011

Wanxue Zeng*
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, the State University of New York, Albany, New York 12203
Xiaodong Wang
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, the State University of New York, Albany, New York 12203
Sumit Kumar
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, the State University of New York, Albany, New York 12203
David W. Peters
Affiliation:
Praxair, Inc., Tonawanda, New York 14150
Eric T. Eisenbraun
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, the State University of New York, Albany, New York 12203
*
a) Address all correspondence to this author. e-mail: wanxue@rocketmail.com
Get access

Abstract

A low-temperature plasma-enhanced atomic layer deposition (PEALD) process has been developed for the growth of ultrathin WNxCy films, using a halide-free W precursor. A 32-nm-thick PEALD WNxCy film deposited using this process at 250 °C possesses a composition of W72C20N5, resistivity of ∼250 μΩ·cm, a root-mean-square (rms) surface roughness of 0.23 nm, and a thickness conformality of more than 80% on trench structures with a width of 120 nm and an aspect ratio of 11. The WNxCy films exhibited excellent thermal stability, whereby resistivity, thickness, surface roughness, and crystal structure were stable after 30 min anneals in 700 Torr, forming gas ambient at temperatures up to 700 °C. Copper diffusion barrier performance measurements show that a 9 nm thick WNxCy film could prevent copper diffusion after a 30 min anneal at 700 °C, while a 2-nm-thick film could prevent copper diffusion after a 30 min anneal at 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cheng, D. and Eisenbraun, E.T.: The integration of plasma-enhanced atomic layer deposition (PEALD) of tantalum-based thin films for copper diffusion barrier applications, in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics–2003, edited by McKerrow, A.J., Leu, J., Kraft, O. and Kikkawa, T. (Mater. Res. Soc. Symp Proc. 766, Warrendale, PA, 2003), p. E10.4.1.Google Scholar
2Park, J., Lee, M., Lee, C., and Kang, S.: Plasma-enhanced atomic layer deposition of tantalum nitrides using hydrogen radicals as a reducing agent. Electrochem Solid-State Lett. 4,C17 (2001).CrossRefGoogle Scholar
3Hand, A.: Industry Begins to Embrace ALD, Semiconductor Int., (May 2003).Google Scholar
4Kaloyeros, A.E. and Eisenbraun, E.T.: Ultrathin diffusion barriers/liners for gigascale copper metallization. Ann. Rev. Mater. Sci. 30, 363 (2000).CrossRefGoogle Scholar
5Takeyama, M. and Noya, A.: Preparation of WNx films and their diffusion barrier properties in Cu/Si contact systems. Jpn. J. Appl. Phys., Part 1 36, 2261 (1997).CrossRefGoogle Scholar
6 The International Technology Roadmap for Semiconductors, 2005 edition, Interconnect, p. 25 (http://public.itrs.net/).Google Scholar
7Fabreguette, F.H., Sechrist, Z.A., Elam, J.W., and George, S.M.: Quartz crystal microbalance study of tungsten atomic layer deposition using WF6 and Si2H6. Thin Solid Films 488, 103 (2005).CrossRefGoogle Scholar
8Elam, J.W., Nelson, C.E., Grubbs, R.K., and George, S.M.: Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition. Surf. Sci. 479, 121 (2001).CrossRefGoogle Scholar
9Grubbs, R.K., Steinmetz, N.J., and George, S.M.: Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6. J. Vac. Sci. Technol. B 22, , 1811 (2004).CrossRefGoogle Scholar
10Klaus, J.W., Ferro, S.J., and George, S.M.: Atomic layer deposition of tungsten nitride films using sequential surface reactions. J. Electrochem. Soc. 147, 1175 (2000).CrossRefGoogle Scholar
11Bystrova, S., Aarnink, A.A.I., Holleman, J., and Wolters, R.A.M.: Atomic layer deposition of W1.5N barrier films for Cu metallization. J. Electrochem. Soc. 152, G522 (2005).CrossRefGoogle Scholar
12Sim, H.S., Kim, S., and Kim, Y.T.: Method to enhance atomic-layer deposition of tungsten-nitride diffusion barrier for Cu interconnect. J. Vac. Sci. Technol. B 21, 1411 (2003).CrossRefGoogle Scholar
13Kim, S., Kim, J., Kwak, N., Sohn, H., Kim, J., Jung, S., Hong, M., Lee, S., and Collins, J.: Atomic layer deposition of low-resistivity and high-density tungsten nitride thin films using B2H6, WF6, and NH3. Electrochem. Solid-State Lett. 9, C54 (2006).CrossRefGoogle Scholar
14Kim, S., Oh, S., Kim, H., Kang, D., Kim, K., Li, W., and Tuominen, M.: Characterization of atomic-layer-deposited WNxCy thin film as a diffusion barrier for copper metallization. J. Electrochem. Soc. 151, C272 (2004).CrossRefGoogle Scholar
15Kim, Y.T. and Park, J.H.: Pulse plasma assisted atomic layer deposition of W-C-N thin films for Cu interconnects. Phys. Status Solidi A 202, R164 (2005).CrossRefGoogle Scholar
16Schuhmacher, J., Travaly, Y., Beyer, G., Stokhof, M., Schaekers, M., and Maex, K.: Process and properties of ALD tungsten nitride carbide barrier films for interconnects, Proc. of Advanced Metallization Conference Tokyo, Japan, and Montreal, QC, Canada, (Materials Research Society, Tokyo, Japan, 2004), p. 755.Google Scholar
17Hoyas, A.M., Schuhmacher, J., Schamiryan, D., Waeterloos, J., Besling, W., Celis, J.P., and Maex, K.: Growth and characterization of atomic layer deposited WC0.7N0.3 on polymer films. J. Appl. Phys. 95, 381 (2004).CrossRefGoogle Scholar
18Becker, J.S. and Gordon, R.: Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia. Appl. Phys. Lett. 82, 2239 (2003).CrossRefGoogle Scholar
19Kim, D., Kim, Y.J., Song, Y.S., Lee, B.T., Kim, J.H., Suh, S., and Gordon, R.: Characteristics of tungsten carbide films prepared by plasma-assisted ALD using bis(ter-butylimido)bis(dimethylamido)tungsten. J. Electrochem. Soc. 150, C740 (2003).CrossRefGoogle Scholar
20Leskela, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138 (2002).CrossRefGoogle Scholar
21Nix, R.: An Introduction to Surface Chemistry, http://www.chem.qmul.ac.uk/surfaces/scc.Google Scholar
22Lin, J., Tsukune, A., Suzuki, T., and Yamada, M.: Conversion of tungsten nitride to pure tungsten. J. Vac. Sci. Technol. A 16, 611 (1998).CrossRefGoogle Scholar
23Ecke, R., Schulz, S.E., Hecker, M., and Gessner, T.: Development of PECVD WNx ultrathin film as barrier layer for copper metallization. Microelectron. Eng. 64, 261 (2002).CrossRefGoogle Scholar
24Suh, B.S., Lee, Y.J., Hwang, J.S., and Park, C.O.: Properties of reactively sputtered WNx as Cu diffusion barrier. Thin Solid Films 348, 299 (1999).CrossRefGoogle Scholar
25Kumar, P.M. Ratheesh, Kartha, C. Sudha, Vijayakumar, K.P., Abe, T., Kashiwaba, Y., Singh, F., and Avasthi, D.K.: On the properties of indium doped ZnO thin films. Semicond. Sci. Technol. 20, 120 (2005).CrossRefGoogle Scholar
26Sridharan, M., Narayandass, S.K., Mangalaraj, D., and Lee, H.C.: Characterization of vacuum evaporated polycrystalline Cd0.96Zn0.04Te thin films by XRD, Raman scattering and spectroscopic ellipsometry. Cryst. Res. Technol. 37, 964 (2002).3.0.CO;2-R>CrossRefGoogle Scholar
27Zeng, W., Wang, X., Meiere, S., and Eisenbraun, E.T.: Low temperature ALD MoN for applications in nanoscale devices. ECS Trans. 1, 163 (2005).CrossRefGoogle Scholar
28Lee, C. and Shin, Y.: Ta-Si-N as a diffusion barrier between Cu and Si. Mater. Chem. Phys. 57, 17 (1998).CrossRefGoogle Scholar
29Zeng, W., Eisenbraun, E., and Kaloyeros, A.: Process optimization and electrical barrier performance of ultrathin plasma assisted chemical vapor deposited TaSiN films for copper metallization applications, Proc. of Advanced Metallization Conference (Materials Research Society, San Diego, CA, 2002), p. 853.Google Scholar