Skip to main content Accessibility help
×
Home

Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics

  • Prashant N. Kumta (a1) and Subhash H. Risbud (a2)

Abstract

Lanthanum sulfide (La2S3) exists in three different allotropic forms in the crystalline state. The low-temperature orthorhombic phase (α) transforms to the intermediate tetragonal phase (β) which further undergoes transformation to the high-temperature cubic phase (γ). The intermediate tetragonal phase (β) is an oxysulfide with possible use as a phosphor, and the cubic phase (γ) of La2S3 shows potential for application as a far IR (8–14 μm) window material. We report metal-organic synthesis routes for the preparation of the β- and γ-phases of La2S3 by processing modifications and choice of precursor chemistry. The alkoxide-derived precursors and the transformed sulfide powders were characterized for morphology, microstructure, and thermal stability. Phase evolution studies were also conducted, and the results are discussed in the context of formation of the β- and γ-phases. Results of densification, microstructure, and infrared transmission characteristics are also presented.

Copyright

References

Hide All
1Musikant, S., Optical Materials, An Introduction to Selection and Application (Marcel Dekker, Inc., New York, 1985).
2Newnham, R. E., Structure-Property Relations, edited by Roy, R. (Springer-Verlag, New York, Heidelberg, Berlin, 1975).
3Savage, J. A., Infrared Optical Materials and Their Antireflection Coatings (Adam Hilger Ltd., Bristol and Boston, 1985).
4Klocek, P., Mater. Res. Bull. V, 41 (1986).
5Morgan, P.E.D. and Koutsoutis, M.S., Mater. Res. Bull. XXII, 617 (1987).
6Wyckoff, R. W. G., Crystal Structures, II, 2nd ed. (Interscience Publishers, 1960), Vol. 2, p. 160.
7Wyckoff, R. W. G., Crystal Structures, II, 2nd ed. (Interscience Publishers, 1960), Vol. 2, p. 75.
8Roy, D., SPIE Proc. 297, 24 (1981).
9Kamarzin, A. A., Mironov, K. E., Sokolov, V. V., Maovitsky, Tu. N., and Vasil'Yeva, I. G., J. Cryst. Growth 52, 619 (1981).
10Flahaut, J., in Handbook on the Physics and Chemistry of Rare Earths 4, 1 (1979).
11Lowe-Ma, C., in Advances in Materials Characterization, edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum, New York, 1983).
12Sleight, A. W. and Prewitt, C. T., Inorg. Chem. 7, 2282 (1968).
13White, W. B. and Knight, D. S., paper presented at the 92nd Annual Meeting of the American Ceramic Society, Dallas, TX, April 22-26, 1990, p. 178.
14Luguev, S.M., Lugueva, N. V., Sokolov, V. V., and Malovitskii, Yu. N., Inorg. Mater. 21, 762 (1985).
15Loginova, E. M., Grizik, A. A., Ponomarev, N. M., and Eliseev, A. A., Inorg. Mater. 11, 644 (1975).
16Volynets, F. K., Dronova, G. N., Vekshina, N. V., and Mironov, I. A., Inorg. Mater. 13, 432 (1977).
17Flahaut, J., Guittard, M., Patrie, M., Pardo, M. P., Golabi, S. M., and Domange, L., Acta Crystallogr. 19, 14 (1965).
18Flahaut, J., Domange, L., and Patrie, M., Bull. Soc. Chim., 2048 (1962).
19Besangon, P., Carre, D., Laruelle, P., and Flahaut, J., in Proc. 9th Rare Earth Research Conf., edited by Field, P.E. (1971), Vol. 1, p. 113.
20Besangon, P., J. Solid State Chem. 7, 232 (1973).
21Walker, P. J. and Ward, R. C. C., Mater. Res. Bull. XIX, 717 (1984).
22Zachariasen, W.H., Acta Crystallogr. 2, 57 (1949).
23Covino, J., Harris, D.C., Hills, M.E., Loda, R.T., and Schwartz, R.W., SPIE Proc. 505, 42 (1984).
24Gschneidner, K. A. Jr, Nakahara, J. F., Beaudry, B. J., and Takeshita, T., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 359.
25Amano, T., Beaudry, B.J., and Gschneidner, K. A. Jr, J. Appl. Phys. 59, 3437 (1986).
26Takeshita, T., Beaudry, B.J., and Gschneidner, K.A. Jr, in The Rare Earths in Modern Science and Technology, edited by McCarthy, G.T., Silber, H.B., and Rhyne, J.J. (Plenum Publishing Corporation, New York, 1982), Vol. 3, p. 255.
27Takeshita, T., Beaudry, B.J., and Gschneidner, K.A. Jr, Fourth Int. Conf. on Thermoelectric Energy Conversion, edited by Rao, K. R. (Institute of Electrical and Electronic Engineers, New York, 1982), p. 48.
28Beaudry, B.J., Tschetter, M.J., Nakahara, J.F., Takeshita, T., and Gschneidner, K. A. Jr, Sixth Int. Conf. on Thermoelectric Energy Conversion, The University of Texas at Arlington, edited by Rao, K. R., 1986, p. 20.
29Takeshita, T., Gschneidner, K.A. Jr, and Beaudry, B.J., J. Appl. Phys. 57, 4633 (1985).
30Wood, C., Lockwood, A., Parker, J., Zoltan, A., and Zoltan, D., J. Appl. Phys. 58, 1542 (1985).
31Whittenberger, J.D. and Smoak, R.H., J. Am. Ceram. Soc. 70, C90 (1987).
32Lewis, K. L., Savage, J. A., Marsh, K. J., and Jones, A. P. C., SPIE Proc. 400, 12 (1983).
33Savage, J. A., Lewis, K. L., Kinsman, B. E., Wilson, A. R., and Riddle, R., SPIE Proc. 683, 79 (1986).
34Laverenz, H. W., An Introduction to Luminescence of Solids (Wiley, New York, 1950), p. 473.
35Johnson, C.E., Hickey, D.K., and Harris, D.C., SPIE Proc. 683, 112 (1986).
36Guiton, T.A., Czekaj, C.L., Rau, M.S., Geoffroy, G.L., and Pantano, C. G., Better Ceramics Through Chemistry, 3 (1988).
37Bensalem, A. and Schleich, D. M., Mater. Res. Bull. XXIII, 857 (1988).
38Wang, L. H., Hon, M. H., Huang, W. L., and Lin, W. Y., Mater. Sci. Eng. B7, 237 (1990).
39Wang, L. H., Hon, M. H., Huang, W. L., and Lin, W. Y., Mater. Res. Bull. XXVI, 649 (1991).
40Wang, L.H., Hon, M.H., Huang, W.L., and Lin, W.Y., J. Mater. Sci. 26, 5013 (1991).
41Han, Y. and Akinc, M., J. Am. Ceram. Soc. 74, 2815 (1991).
42Kumta, P. N. and Risbud, S. H., Mater. Sci. Eng. B2, 281 (1989).
43Kumta, P.N. and Risbud, S.H., Prog. Cryst. Growth Char. Mater. 22, 321 (1991).
44Kumta, P.N. and Risbud, S.H., Proc. 4th Int. Conf. on Ultra-structure Processing of Ceramics, Composites and Glasses, “Ultrastructure Processing of Advanced Materials,” edited by Uhlmann, D. R. and Ulrich, D. R. (John Wiley, New York, 1992).
45Vickery, R. C., Chemistry of Lanthanons (Academic Press, New York, 1953), p. 237.
46Kumta, P.N., Phule, P.P., and Risbud, S.H., Mater. Lett. 5, 401 (1987).
47Mackenzie, J. D. and Ono, K., Oxide Ceramic Fibers by the SolGel Method (Materials Laboratory, Air Force Wright Aeronautical Laboratory, 1989).
48Mazdiyasni, K. S., General Atomics, private communication (1989).
49Skoog, D. A., in Principles of Instrumental Analysis (Saunders College, 1985), p. 716.
50James, P. F., J. Non-Cryst. Solids 100, 93 (1988).
51Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1975), Card 27-263.
52Chess, D. L., Chess, C. A., and White, W. B., J. Am. Ceram. Soc. 66, C205 (1983).
53Melling, P.J., Ceram. Bull. 63, 1427 (1984).
54Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1973), Card 25-1041.
55Vaughan, C.M. and White, W.B., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 397.
56Hench, L. L., University of Florida, Gainesville, private communication, at the Proc. Fourth Int. Conf. on Ultrastructure Processing of Ceramics, Composites and Glasses (1989).
57Brown, L. M. and Mazdiyasni, K. S., Inorg. Chem. 9, 2783 (1970).
58Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1968), Card 22-645.
59Saunders, K. J., Wong, T. Y., and Gentilman, R.L., SPIE Proc. 505, 31 (1984).
60Henderson, J. R., Muramoto, M., Loh, E., and Gruber, J. B., J. Chem. Phys. 47, 3347 (1967).
61Schevciw, O. and White, W.B., Mater. Res. Bull. XVIII, 1059 (1983).

Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics

  • Prashant N. Kumta (a1) and Subhash H. Risbud (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed