Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T10:30:46.675Z Has data issue: false hasContentIssue false

Low-load indentation behavior of HfN thin films deposited by reactive rf sputtering

Published online by Cambridge University Press:  31 January 2011

R. Nowak
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
C. L. Li
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
S. Maruno
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

Deformation of HfN thin films deposited by the reactive sputtering method on silicon and alumina substrates has been investigated using depth-sensing indentation. The experiments performed in a low load range (2−50 mN) revealed that even extremely shallow indentations were affected by the elastic/plastic response of the substrate. The analysis of the shape of the indentation load-depth hysteresis loops and of conventional hardness data was supplemented by considerations based on the recently proposed energy principle of indentation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grill, A. and Aron, P. R., Thin Solid Films 108, 173180 (1983).CrossRefGoogle Scholar
2.Nimmagada, R. and Bunshah, R. F., Thin Solid Films 63, 327331 (1979).CrossRefGoogle Scholar
3.Sproul, W. D., Thin Solid Films 118, 279284 (1984).CrossRefGoogle Scholar
4.Johansson, B. O., Sundgren, J. E., and Helmersson, U., J. Appl. Phys. 58, 31123117 (1985).Google Scholar
5.Perry, A. J., J. Vac. Sci. Technol. A 6, 21402148 (1988).CrossRefGoogle Scholar
6.Jehn, H. A., Kopacz, U., and Hofmann, S., J. Vac. Sci. Technol. A 3, 24062410 (1985).CrossRefGoogle Scholar
7.Wierenga, P. E. and Franken, A. J. J., J. Appl. Phys. 55, 42444247 (1984).CrossRefGoogle Scholar
8.Hainsworth, S. V., Barlett, T., and Page, T. F., Thin Solid Films 236, 214218 (1993).Google Scholar
9.Shiwa, M., Weppelmann, E. R., Bendeli, A., Swain, M. V., Munz, D., and Kishi, T., Surf. Coatings Technol. 68/69, 598602 (1994).CrossRefGoogle Scholar
10.Sakai, M., Acta Metall. Mater. 41, 17511758 (1993).CrossRefGoogle Scholar
11.Nowak, R. and Sakai, M., J. Mater. Res. 8, 10681078 (1993).CrossRefGoogle Scholar
12.Nowak, R. and Maruno, S., Mater. Sci. Eng. A 202, 226237 (1995).CrossRefGoogle Scholar
13.Weppelmann, E. R., Field, J. S., and Swain, M. V., J. Mater. Sci. 30, 24552462 (1995).CrossRefGoogle Scholar
14.Chicot, D. and Lesage, J., Thin Solid Films 254, 123130 (1995).CrossRefGoogle Scholar
15.Manika, I. and Maniks, J., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), pp. 349358.Google Scholar
16.Jönsson, B. and Hogmark, S., Thin Solid Films 114, 257269 (1984).CrossRefGoogle Scholar
17.Cai, X. and Bangert, H., Thin Solid Films 264, 5971 (1995).CrossRefGoogle Scholar
18.Nowak, R. and Sakai, M., Acta Metall. Mater. 42, 28792891 (1994).Google Scholar
19.Ensinger, W. and Nowak, R., Nucl. Instrum. Methods, Phys. Res. B 80/81, 10851090 (1993).Google Scholar
20.Nowak, R., Li, C. L., and Maruno, S., unpublished.Google Scholar
21.Söderlund, E. and Rowcliffe, D. J., J. Hard Mater. 5, 149177 (1994).Google Scholar