Skip to main content Accessibility help
×
Home

Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics

  • Stephen F. Poterala (a1), Richard J. Meyer (a2) and Gary L. Messing (a3)

Abstract

A novel combination of low-field magnetic alignment (MA) and templated grain growth (TGG) was used to fabricate highly textured diamagnetic 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 (0.72PMN–0.28PT) ceramics. Samples were produced by nonaqueous slip casting of PMN–PT slurries, in which diamagnetic plate-like 0.4(Na1/2Bi1/2)TiO3–0.6PbTiO3 (0.4NBT–0.6PT) template particles were aligned by dynamic MA in a 2.2-T permanent magnet array. Template alignment improved as slurry viscosity increased, with a 32-vol% solid loading (a viscosity of ∼0.1 Pa s at 0.1 s−1) giving optimal texture quality (7.85° FWHM, f = 92 vol%) after sintering and TGG. Alignment was stable for more than 3 h during slip casting, allowing fabrication of ∼1-cm thick textured ceramics with high piezoelectric response (d33 = 1222 pC/N). The success of dynamic MA at low magnetic field (2.2 T) is attributed to an increase in driving force for alignment of large (5–10 μm) template particles relative to the randomizing effect of Brownian motion (i.e., thermal energy kBT).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: spoterala@channeltech.com

References

Hide All
1.Messing, G.L., Trolier-McKinstry, S., Sabolsky, E.M., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilmaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., Seabaugh, M., and Oh, K.S.: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29(2), 45 (2004).
2.Kimura, T.: Application of texture engineering to piezoelectric ceramics: A review. J. Ceram. Soc. Jpn. 114, 1525 (2006).
3.Chang, Y., Lee, S., Poterala, S.F., Randall, C.A., and Messing, G.L.: A critical evaluation of reactive templated grain growth (RTGG) mechanisms in highly [001] textured Sr0.61Ba0.39Nb2O6 ferroelectric-thermoelectrics. J. Mater. Res. 26, 30443050 (2011).
4.Pavlacka, R.J. and Messing, G.L.: Processing and mechanical response of highly textured Al2O3. J. Eur. Ceram. Soc. 30, 29172925 (2010).
5.Dollase, W.A.: Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 19, 267272 (1986).
6.Seabaugh, M.M., Messing, G.L., and Vaudin, M.D.: Texture development and microstructure evolution in liquid-phase-sintered α-alumina ceramics prepared by templated grain growth. J. Am. Ceram. Soc. 83, 31093116 (2000).
7.Brosnan, K.H., Messing, G.L., Meyer, R.J. Jr., and Vaudin, M.D.: Texture measurements in <001> fiber‐oriented PMN-PT. J. Am. Ceram. Soc. 89, 19651971 (2006).
8.Brosnan, K.H., Poterala, S.F., Meyer, R.J., Misture, S., and Messing, G.L.: Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates. J. Am. Ceram. Soc. 92, S133S139 (2009).
9.Poterala, S.F., Trolier-McKinstry, S., Meyer, R.J., and Messing, G.L.: Processing, texture quality, and piezoelectric properties of <001>C textured (1-x)Pb(Mg1/3Nb2/3)TiO3 - xPbTiO3 ceramics. J. Appl. Phys. 110, 014105 (2011).
10.Aleshin, V.I., Raevskiĭ, I.P., and Sitalo, E.I.: Electromechanical properties of a textured ceramic material in the (1-x)PMN-xPT system: Simulation based on the effective-medium method. Phys. Solid State 50, 21502156 (2008).
11.Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, Ser. A 102, 161179 (1922).
12.Wu, M. and Messing, G.L.: Fabrication of oriented SiC-whisker-reinforced mullite matrix composites by tape casting. J. Am. Ceram. Soc. 77, 25862592 (1994).
13.Snel, M.D., van Hoolst, J., de Wilde, A-M., Mertens, M., Snijkers, F., and Luyten, J.: Influence of tape cast parameters on texture formation in alumina by templated grain growth. J. Eur. Ceram. Soc. 29, 27572763 (2009).
14.Leal, L.G. and Hinch, E.J.: The effect of weak brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685703 (1971).
15.Feng, Q., Hirasawa, M., and Yanagisawa, K.: Synthesis of crystal-axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chem. Mater. 13, 290296 (2001).
16.Poterala, S.F., Chang, Y., Clark, T., Meyer, R.J., and Messing, G.L.: Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process. Chem. Mater. 22, 20612068 (2010).
17.Sudre, O., Bao, G., Fan, B., Lange, F.F., and Evans, A.G.: Effect of inclusions on densification: II, numerical model. J. Am. Ceram. Soc. 75, 525531 (1992).
18.Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Control of texture in alumina by colloidal processing in a strong magnetic field. Sci. Technol. Adv. Mater. 7, 356364 (2006).
19.Fujiwara, M., Fukui, M., and Tanimoto, Y.: Magnetic orientation of benzophenone crystals in fields up to 80.0 kOe. J. Phys. Chem. B 103, 26272630 (1999).
20.Suzuki, T.S., Miwa, Y., Kawada, S., Kimura, M., Uchikoshi, T., and Sakka, Y.: Two-dimensional orientation in Bi4Ti3O12 prepared using platelet particles and a magnetic field. J. Am. Ceram. Soc. 96(4), 10851089 (2013).
21.Kesinbora, K., Suzuki, T.S., Ozer, I.O., Sakka, Y., and Suvaci, E.: Hybrid processing and anisotropic sintering shrinkage in textured ZnO ceramics. Sci. Technol. Adv. Mater. 11, 065006 (2010).
22.Noheda, B., Cox, D.E., Shirane, G., Gao, J., and Ye, Z.G.: Phase diagram of the ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3. Phys. Rev. B 66(5), 054104 (2002).
23.Poterala, S.F., Meyer, R.J. Jr., and Messing, G.L.: Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets. J. Am. Ceram. Soc. 94(8), 23232329 (2011).
24.Yamaguchi, M., Ozawa, S., and Yamamoto, I.: Dynamic behavior of magnetic alignment in rotating field for magnetically weak particles. Jpn. J. Appl. Phys. 49, 080213 (2010).
25.Terada, N., Suzuki, H.S., Suzuki, T.S., Kitazawa, H., Sakka, Y., Kaneko, K., and Metoki, N.: Neutron diffraction texture analysis for α-Al2O3 oriented by high magnetic field and sintering. J. Phys. D: Appl. Phys. 42, 105404105408 (2009).
26.Yamaguchi, M., Ozawa, S., and Yamamoto, I.: Rotational diffusion model of magnetic alignment. Jpn. J. Appl. Phys. 48, 063001 (2009).
Type Description Title
WORD
Supplementary materials

Poterala et al. supplementary material
Supplementary information

 Word (625 KB)
625 KB

Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics

  • Stephen F. Poterala (a1), Richard J. Meyer (a2) and Gary L. Messing (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed