Skip to main content Accessibility help
×
Home

Low temperature synthesis of lead titanate by a hydrothermal method

  • Jooho Moon (a1), Tuo Li (a1), Clive A. Randall (a2) and James H. Adair (a1)

Abstract

Alkoxide-based hydrothermal powder synthesis of lead titanate was investigated. The objective of this work was to lower the synthesis temperature. By modifying titanium isopropoxide with acetylacetone during solution mixing, the phase-pure lead titanate with perovskite structure was synthesized at temperatures as low as 150 °C. It was determined that the pH of the hydrothermal reaction medium and the initial Pb/Ti ratio are critical factors in forming stoichiometric PbTiO3. When the pH of the initial feedstock is above 14 and the Pb/Ti ratio is greater than 1.5, a phase-pure PbTiO3 can be obtained. The modification of titanium alkoxide gave rise to the formation of a stable complex against hydrolysis and eventually reduced the synthesis temperature significantly. A possible formation mechanism for PbTiO3 is the dissolution-recrystallization from an amorphous precursor to a well-crystalline product as originally proposed by Rossetti et al. Hall–Williamson analysis was also performed on the hydrothermally derived PbTiO3 to interpret the systematic peak broadening and asymmetry for {001} reflections, unlike the commercial PbTiO3. It was observed that the strain in the c-axis direction is much higher than that in the a-axis direction while the domain sizes for both directions are similar. This strain anisotropy exerted in the particles may indicate a unique domain structure in the hydrothermally synthesized particles in which either only 180° domains exist or possibly only a single domain.

Copyright

References

Hide All
1.Johnson, W., Jr., in Advances in Ceramics, Vol. 21, Ceramic Powder Science, edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W., and Haber, R. A. (The American Ceramic Society Inc., Westerville, OH, 1987), p. 3.
2.Matijević, E., Chem. Mater. 5, 412 (1993).
3.Dawson, W. J., Preston, J. C., and Swartz, S. L., in Ceramic Transactions, Vol. 22, Ceramic Powder Science IV, edited by Hirano, S., Messing, G. L., and Hausner, H. (The American Ceramic Society, Inc., Westerville, OH, 1991), p. 27.
4.Hirano, S., Am. Ceram. Soc. Bull. 66 (9), 1342 (1987).
5.Barringer, E., Jubb, N., Fegley, B., Pober, R. L., and Bowen, H. K., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Son, New York, 1984), p. 315.
6.Jaffe, B., Cook, W. R., Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).
7.Blum, J. B. and Gurkovich, S. R., J. Mater. Sci. 20, 4479 (1985).
8.Fox, G. R., Adair, J. H., and Newnham, R. E., J. Mater. Sci. 25, 3634 (1990).
9.Kim, M. J. and Matijević, E., Chem. Mater. 1, 363 (1989).
10.Watson, D. J., Randall, C. A., Newnham, R. E., and Adair, J. H., in Ceramics Transactions, Vol. 1, Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R. Jr. and Hausner, H. (The American Ceramic Society Inc., Westerville, OH, 1988), p. 154.
11.Suzuki, M., Uedaira, S., Masuya, H., and Tamura, H., in Ceramics Transactions, Vol. 1, Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R. Jr. and Hausner, H. (The American Ceramic Society Inc., Westerville, OH, 1988), p. 163.
12.Arendt, R. H. and Rosolowski, J. H., Molten Salt Synthesis of Lead Zirconate Titanate Solid Solution Powder, U.S. Patent, 4 152 282, May 1, 1979.
13.Shrout, T. R., Papet, P., Kim, S., and Lee, G-H., J. Am. Ceram. Soc. 73 (7), 1862 (1990).
14.Dawson, W. J., Am. Ceram. Soc. Bull. 67 (10), 1673 (1988).
15.Cheng, H., Ma, J., Zhao, Z., and Qiang, D., Am. Ceram. Soc. 75 (5), 1125 (1992).
16.Kutty, T. R. N. and Balachandran, R., Mater. Res. Bull. 19, 1479 (1984).
17.Sanchez, C., Toledano, P., and Ribot, F., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 47.
18.Livage, J., Henry, M., Jolivet, J. P., and Sanchez, C., Mater. Res. Soc. Bull. XV (1), 18 (1990).
19.Yamanoto, A. and Kambara, S., J. Am. Chem. Soc. 79, 4344 (1957).
20.Leaustic, A., Babonneau, F., and Livage, J., Chem. Mater. 1, 240 (1989).
21. ibid, Chem. Mater. 1, 248 (1989).
22.Phulé, P. P. and Khairulla, F., in Ceramics Transactions, Vol. 12, Ceramic Powder Science III, edited by Messing, G. L., Hirano, S-I. Jr. and Hausner, H. (The American Ceramic Society Inc., Westerville, OH, 1990), p. 725.
23.Milne, S. J. and Pyke, S. H., J. Am. Ceram. Soc. 74 (6), 1407 (1991).
24.Hubert-Pfalzgraf, L. G., Poncelet, O., and Daran, J-C., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 73.
25.Beal, K. C., in Advances in Ceramics, Vol. 21, Ceramic Powder Science, edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W., and Haber, R. A. (The American Ceramic Society Inc, Westerville, OH, 1987), p. 33.
26.Lencka, M. M. and Riman, R. E., Chem. Mater. 5, 61 (1993).
27.Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).
28.Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, 1974).
29.Li, Z., Foster, C. M., Dai, X-H., Xu, X-Z., Chan, S-K., and Lam, D. J., J. Appl. Phys. 71 (9), 4481 (1992).
30.Arlt, G., Ferroelectrics 104, 217 (1990).
31.Randall, C. A., Kim, N., Cao, W., and Shrout, T. R., in Proceedings of the Seventh US-Japan Seminar on Dielectrics and Piezoelectrics, edited by Yamamoto, T., Tsukuba, Nov. 14 (1995).
32.Cao, W. and Randall, C. A., J. Phys. Chem. (1996, in press).
33.Rossetti, G. A., Jr., Cao, W., and Randall, C. A., Ferroelectrics 158, 343 (1994).
34.Allen, T., Particle Size Measurement (Chapman and Hall, New York, 1990).
35.Scheaffer, R. L. and McClave, J. T., Probability and Statistics for Engineers (PWS-KENT, Boston, MA, 1990).
36.Rossetti, G. A., Jr., Watson, D. J., Newnham, R. E., and Adair, J. H., J. Cryst. Growth 116, 251 (1992).
37.Moon, J., Costantino, S. A., and Adair, J. H., unpublished.
38.Moon, J., Li, T., Costantino, S. A., and Adair, J. H., unpublished.

Related content

Powered by UNSILO

Low temperature synthesis of lead titanate by a hydrothermal method

  • Jooho Moon (a1), Tuo Li (a1), Clive A. Randall (a2) and James H. Adair (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.